Patents by Inventor Jyh-Rong Sheu

Jyh-Rong Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7701128
    Abstract: A planar light unit provided with field emitters and a method for fabricating the same. According to the present invention, the planar light unit has a first substrate, a plurality of first conductive strips, a plurality of second conductive strips, a plurality of field emitters, a second substrate and a fluorescent film. The plurality of first conductive strips are formed over the first substrate, and the plurality of second conductive strips are formed over the first substrate and interposed inbetween the plurality of first conductive strips. The plurality of field emitters are formed in proximity of the plurality of first conductive strips. The second substrate is provided to be attached to and spaced apart from the first substrate to form a chamber therebetween, whereas a fluorescent film is formed over the interior surface of the second substrate facing the plurality of field emitters.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 20, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Liang-You Chiang, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Patent number: 7662428
    Abstract: A method for increasing the number of carbon nanotubes exposed on the triode structure device of a field emission display uses the technology of casting surface treatment. For advancing the current density and magnitude of CNT emitters, the method of casting surface treatment on the CNT emitters includes the steps of coating an adhesive material on the surface of the device; heating the adhesive material for adhibitting the surface; and lifting the adhesive material off the surface.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: February 16, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Chun-Tao Lee, Cheng-Chung Lee, Jia-Chong Ho, Yu-Yang Chang
  • Patent number: 7594841
    Abstract: A method for fabricating a carbon nanotube field emitter array is disclosed, which has the steps of (a) providing a substrate; (b) forming a cathode layer having a first pattern on the substrate; (c) forming an opaque insulating layer having a second pattern on the substrate, wherein a predetermined part of the cathode layer is exposed; (d) forming a gate layer having the second pattern on the opaque insulating layer; (e) forming a carbon nanotube layer on the entire top surface of the substrate; and (f) exposing the carbon nanotube layer to a light beam coming from the backside of the substrate.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: September 29, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Ching-Hsun Chao, Liang-You Jiang, Yu-Yang Chang, Cheng-Chung Lee
  • Patent number: 7413763
    Abstract: A method of transferring imprint carbon nano-tube (CNT) field emitting source is disclosed. Firstly, cathode lines are screen printed on a substrate. Then a dielectric layer formation on the cathode lines and substrate is followed. Afterward, gate lines formed on the dielectric layer by screen printing are performed. Next a patterning process is carried out to form openings. Subsequently, an imprint negative mold is dipped with CNT paste and imprinted the CNT paste on the cathode lines through the openings. After drawing of pattern from the imprint mold, the CNT paste is cured by annealing. Since the emitting sources are formed through the imprint negative mold, as a result, the size and shape can be predetermined. Moreover, the intervals between gate line and the emitting source are readily control, which resolve the circuit short problem between gate and cathode. Consequently, the current density, brightness, and uniformity of the emitter sources are significantly improved.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: August 19, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Hsun Chao, Jyh-Rong Sheu, Liang-Yu Chiang, Yu-Yang Chang, Cheng-Chung Lee
  • Patent number: 7322869
    Abstract: A structure of a coplanar gate-cathode of triode CNT-FED and a manufacturing method thereof by Imprint Lithography and ink jet. The structure includes a substrate, a plurality of cathode layers, a plurality of gate extended layers, a plastic dielectric layer, a plurality of dielectric openings, and a plurality of gate electrodes. The plurality of cathode layers and the plurality of gate extended layers are coplanar, and formed on the substrate by Imprint Lithography and the plurality of dielectric openings are made by Imprint Lithography. The gate electrode, made by ink jet or screen print, can be extended through the plastic dielectric layer to the gate extended electrode to feature the coplanar gate-cathode.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Hsun Chao, Jane-Hway Liao, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Patent number: 7161289
    Abstract: A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: January 9, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang, Jia-Chong Ho, Yu-Wu Wang
  • Patent number: 7156715
    Abstract: A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 2, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang, Jia-Chong Ho, Yu-Wu Wang
  • Patent number: 7154214
    Abstract: A structure of a coplanar gate-cathode of triode CNT-FED and a manufacturing method thereof by Imprint Lithography and ink jet. The structure includes a substrate, a plurality of cathode layers, a plurality of gate extended layers, a plastic dielectric layer, a plurality of dielectric openings, and a plurality of gate electrodes. The plurality of cathode layers and the plurality of gate extended layers are coplanar, and formed on the substrate by Imprint Lithography and the plurality of dielectric openings are made by Imprint Lithography. The gate electrode, made by ink jet or screen print, can be extended through the plastic dielectric layer to the gate extended electrode to feature the coplanar gate-cathode.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: December 26, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Hsun Chao, Jane-Hway Liao, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20060258252
    Abstract: The present inventions provide a structure of coplanar gate-cathode of triode CNT-FED and the manufacturing method thereof by Imprint Lithography and ink jet. The structure includes a substrate, a plurality of cathode layers, a plurality of gate extended layers, a plastic dielectric layer, a plurality of dielectric openings, and a plurality of gate electrodes. The plurality of cathode layers and the plurality of gate extended layers are coplanar, made by forming on the substrate by Imprint Lithography and the plurality of dielectric opening made by Imprint Lithography too. Besides, the gate electrode, made by ink jet or screen print, can be extended through the plastic dielectric layer to the gate extended electrode to feature the coplanar gate-cathode.
    Type: Application
    Filed: July 21, 2006
    Publication date: November 16, 2006
    Inventors: Ching-Hsun Chao, Jane-Hway Liao, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20060175954
    Abstract: A planar light unit provided with field emitters and a method for fabricating the same. According to the present invention, the planar light unit has a first substrate, a plurality of first conductive strips, a plurality of second conductive strips, a plurality of field emitters, a second substrate and a fluorescent film. The plurality of first conductive strips are formed over the first substrate, and the plurality of second conductive strips are formed over the first substrate and interposed inbetween the plurality of first conductive strips. The plurality of field emitters are formed in proximity of the plurality of first conductive strips. The second substrate is provided to be attached to and spaced apart from the first substrate to form a chamber therebetween, whereas a fluorescent film is formed over the interior surface of the second substrate facing the plurality of field emitters.
    Type: Application
    Filed: February 4, 2005
    Publication date: August 10, 2006
    Inventors: Liang-You Chiang, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Patent number: 7009331
    Abstract: A carbon nano-tube field emission display has a plurality of strip shaped gates, wherein the strip shaped gate of the triode structure is in place of the conventional hole shaped gate, and morecover, a plurality of cathode electrons are induced by the electric force from the side of the gate. Therefore, when the carbon nano-tube electron emission source emits electrons, which are controlled under the strip shaped gate, the diffusion direction of the electron beam is confined in the same direction. Consequently, controlling the image pixel and using the particular advantage of the triode-structure field emission display significantly improve the image uniformity and the luminous efficiency.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 7, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Chun-Tao Lee, Shin-Chiuan Jiang, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20050253501
    Abstract: The present inventions provide a structure of coplanar gate-cathode of triode CNT-FED and the manufacturing method thereof by Imprint Lithography and ink jet. The structure includes a substrate, a plurality of cathode layers, a plurality of gate extended layers, a plastic dielectric layer, a plurality of dielectric openings, and a plurality of gate electrodes. The plurality of cathode layers and the plurality of gate extended layers are coplanar, made by forming on the substrate by Imprint Lithography and the plurality of dielectric opening made by Imprint Lithography too. Besides, the gate electrode, made by ink jet or screen print, can be extended through the plastic dielectric layer to the gate extended electrode to feature the coplanar gate-cathode.
    Type: Application
    Filed: June 9, 2004
    Publication date: November 17, 2005
    Inventors: Ching-Hsun Chao, Jane-Hway Liao, Jyh-Rong Sheu, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20050197032
    Abstract: A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
    Type: Application
    Filed: April 19, 2005
    Publication date: September 8, 2005
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang, Jia-Chong Ho, Yu-Wu Wang
  • Publication number: 20050067937
    Abstract: A method for fabricating a carbon nanotube field emitter array is disclosed, which has the steps of (a) providing a substrate; (b) forming a cathode layer having a first pattern on the substrate; (c) forming an opaque insulating layer having a second pattern on the substrate, wherein a predetermined part of the cathode layer is exposed; (d) forming a gate layer having the second pattern on the opaque insulating layer; (e) forming a carbon nanotube layer on the entire top surface of the substrate; and (f) exposing the carbon nanotube layer to a light beam coming from the backside of the substrate.
    Type: Application
    Filed: June 2, 2004
    Publication date: March 31, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Ching-Hsun Chao, Liang-You Jiang, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20050067938
    Abstract: A carbon nano-tube field emission display has a plurality of strip shaped gate, wherein the strip shaped gate of the triode structure is now in place of the conventional hole shaped gate, moreover, pluralities of cathode electrons are induced by the electric force from the side of the gate. Therefore, when the carbon nano-tube electron emission source emits electrons, which is controlled under the strip shaped gate, and the diffusion direction of the electron beam is confined in the same direction. Consequently, controlling the image pixel and using the particular advantage of triode-structure field emission display significantly improve the image uniformity and the luminous efficiency.
    Type: Application
    Filed: December 2, 2003
    Publication date: March 31, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Chun-Tao Lee, Shin-Chiuan Jiang, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20050062195
    Abstract: A method of transferring imprint carbon nano-tube (CNT) field emitting source is disclosed. Firstly, cathode lines are screen printed on a substrate. Then a dielectric layer formation on the cathode lines and substrate is followed. Afterward, gate lines formed on the dielectric layer by screen printing are performed. Next a patterning process is carried out to form openings. Subsequently, an imprint negative mold is dipped with CNT paste and imprinted the CNT paste on the cathode lines through the openings. After drawing of pattern from the imprint mold, the CNT paste is cured by annealing. Since the emitting sources are formed through the imprint negative mold, as a result, the size and shape can be predetermined. Moreover, the intervals between gate line and the emitting source are readily control, which resolve the circuit short problem between gate and cathode. Consequently, the current density, brightness, and uniformity of the emitter sources are significantly improved.
    Type: Application
    Filed: November 14, 2003
    Publication date: March 24, 2005
    Inventors: Ching-Hsun Chao, Jyh-Rong Sheu, Liang-Yu Chiang, Yu-Yang Chang, Cheng-Chung Lee
  • Publication number: 20040224081
    Abstract: The invention relates to a method for carbon nanotube emitter surface treatment, which is used to increase the number of carbon nanotube exposed on the triode structure device. For advancing the current density and magnitude of CNT emitter, the invention uses a method of casting surface treatment on the CNT emitter including the steps of coating an adhesive material on the surface of device; heating the adhesive material for adhibitting the surface; and lifting the adhesive material off.
    Type: Application
    Filed: September 4, 2003
    Publication date: November 11, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Chun-Tao Lee, Cheng-Chung Lee, Jia-Chong Ho, Yu-Yang Chang
  • Patent number: 6811457
    Abstract: A method for fabricating the cathode plate of a carbon nano tube field emission display uses a photosensitive paste and etchable dielectric material to fabricate the cathode plate. The method combines photolithography process and etching process to fabricate a cathode electrode layer, a dielectric layer, a gate layer, and a carbon nano tube emission layer. Packing this cathode plate structure with a conventional anode plate together can form a carbon nano tube field emission array. The distribution of the electric field is uniform and the alignment at post-process is made easy.
    Type: Grant
    Filed: February 9, 2002
    Date of Patent: November 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Hua-Chi Cheng, Cheng-Chung Lee, Jane-Hway Liao, Yu-Yang Chang, Jyh-Rong Sheu, Jia-Chong Ho
  • Patent number: 6769945
    Abstract: A triode structure of a field emission display is manufactured with thick-film technology. The triode structure includes a cathode electrode layer that comprises a metallic catalyst. Isomeric carbon emitters can be grown on the cathode electrode layer by CVD process at a low temperature because of the metallic catalyst. Instead of mixing the metallic catalyst in the cathode electrode layer, a metallic catalyst layer can be formed on the cathode electrode layer to facilitate the growth of the isomeric carbon emitters. The combination of thick film technology and low temperature CVD process provide a low cost method for fabricating a large area field emission display with isomeric carbon emitters.
    Type: Grant
    Filed: August 24, 2002
    Date of Patent: August 3, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Yang Chang, Hua-Chi Cheng, Jyh-Rong Sheu, Ching-Hsun Chao, Kuang-Chung Chen
  • Publication number: 20040104668
    Abstract: A triode structure of a field emission display and fabrication method thereof. A plurality of cathode layers arranged in a matrix is formed overlying a dielectric layer. A plurality of emitting layers arranged in a matrix is formed overlying the cathode layers, respectively. A plurality of lengthwise-extending gate lines is formed on the dielectric layer, in which each of the gate layers is disposed between two adjacent columns of the cathode layers.
    Type: Application
    Filed: May 13, 2003
    Publication date: June 3, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang, Jia-Chong Ho, Yu-Wu Wang