Patents by Inventor Jyh-Rong Sheu

Jyh-Rong Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6741039
    Abstract: An improved FED driving method, which uses a voltage control different from the prior FED, to turn an electron beam on/off and increase the resolution. The improved FED driving method is characterized in increasing a positive voltage applied to the FED's anode, grounding the FED's emitter and applying a negative voltage to the FED's gate. When driving the FED, the anode can pull electron beam out of the cathode with high accelerate voltage and the applied negative voltage on the gate can turn the electron beam on/off. As such, this allows a higher resolution because the electron beam is not influenced by the gate's lateral attraction and high lighting efficiency with high anode accelerate voltage.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 25, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang
  • Patent number: 6705910
    Abstract: A manufacturing method for an electron-emitting source of triode structure, including forming a cathode layer on a substrate, forming a dielectric layer on the cathode layer, and positioning an opening in the dielectric layer to expose the cathode layer, wherein the opening has a surrounding region, forming a gate layer on the dielectric layer, except on the surrounding region, forming a hydrophilic layer in the opening, forming a hydrophobic layer on the gate layer and the surrounding region, wherein the hydrophobic layer contacts the ends of the hydrophilic layer, dispersing a carbon nanotube solution on the hydrophilic layer using ink jet printing, executing a thermal process step, and removing the hydrophobic layer. According to this method, carbon nanotubes are deposited over a large area in the gate hole.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: March 16, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Rong Sheu, Jia-Chong Ho, Yu-Yang Chang, Hua-Chi Cheng, Cheng-Chung Lee
  • Publication number: 20040038614
    Abstract: A triode structure of a field emission display is manufactured with thick-film technology. The triode structure includes a cathode electrode layer that comprises a metallic catalyst. Isomeric carbon emitters can be grown on the cathode electrode layer by CVD process at a low temperature because of the metallic catalyst. Instead of mixing the metallic catalyst in the cathode electrode layer, a metallic catalyst layer can be formed on the cathode electrode layer to facilitate the growth of the isomeric carbon emitters. The combination of thick film technology and low temperature CVD process provide a low cost method for fabricating a large area field emission display with isomeric carbon emitters.
    Type: Application
    Filed: August 24, 2002
    Publication date: February 26, 2004
    Inventors: Yu-Yang Chang, Hua-Chi Cheng, Jyh-Rong Sheu, Ching-Hsun Chao, Kuang-Chung Chen
  • Patent number: 6692791
    Abstract: The present invention provides a method for manufacturing a carbon nanotube field emission display. The method comprises the steps of providing a substrate, screen printing a first conducting layer on the substrate, sintering the first conducting layer, screen printing an isolation layer on the first conducting layer and a second conducting layer on the isolation layer, etching the second conducting layer and the isolation layer, whereby a cavity exposing the first conducting layer is formed, sintering the second conducting layer and the isolation layer, and forming a carbon nanotube layer on the first conducting layer in the cavity.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: February 17, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Yang Chang, Jyh-Rong Sheu, Chun-Tao Lee, Chen-Chung Lee
  • Publication number: 20030151344
    Abstract: A method for fabricating the cathode plate of a carbon nano tube field emission display uses a photoconductive paste and etchable dielectric material to fabricate the cathode plate. The method combines photolithography process and etching process to fabricate a cathode electrode layer, a dielectric layer, a gate layer, and a carbon nano tube emission layer. Packing this cathode plate structure with a conventional anode plate together can form a carbon nano tube field emission array. The distribution of the electric field is uniform and the alignment at post-process is made easy.
    Type: Application
    Filed: February 9, 2002
    Publication date: August 14, 2003
    Inventors: Hua-Chi Cheng, Cheng-Chung Lee, Jane-Hway Liao, Yu-Yang Chang, Jyh-Rong Sheu, Jia-Chong Ho
  • Publication number: 20030122118
    Abstract: An improved FED driving method, which uses a voltage control different from the prior FED, to turn an electron beam on/off and increase the resolution. The improved FED driving method is characterized in increasing a positive voltage applied to the FED's anode, grounding the FED's emitter and applying a negative voltage to the FED's gate. When driving the FED, the anode can pull electron beam out of the cathode with high accelerate voltage and the applied negative voltage on the gate can turn the electron beam on/off. As such, this allows a higher resolution because the electron beam is not influenced by the gate's lateral attraction and high lighting efficiency with high anode accelerate voltage.
    Type: Application
    Filed: May 16, 2002
    Publication date: July 3, 2003
    Inventors: Chun-Tao Lee, Cheng-Chung Lee, Jyh-Rong Sheu, Yu-Yang Chang
  • Publication number: 20030049875
    Abstract: A manufacturing method for an electron-emitting source of triode structure, including forming a cathode layer on a substrate, forming a dielectric layer on the cathode layer, and positioning an opening in the dielectric layer to expose the cathode layer, wherein the opening has a surrounding region, forming a gate layer on the dielectric layer, except on the surrounding region, forming a hydrophilic layer in the opening, forming a hydrophobic layer on the gate layer and the surrounding region, wherein the hydrophobic layer contacts the ends of the hydrophilic layer, dispersing a carbon nanotube solution on the hydrophilic layer using ink jet printing, executing a thermal process step, and removing the hydrophobic layer. According to this method, carbon nanotubes are deposited over a large area in the gate hole.
    Type: Application
    Filed: February 7, 2002
    Publication date: March 13, 2003
    Inventors: Jyh-Rong Sheu, Jia-Chong Ho, Yu-Yang Chang, Hua-Chi Cheng, Cheng-Chung Lee
  • Publication number: 20030044537
    Abstract: The present invention provides a method for manufacturing a carbon nanotube field emission display. The method comprises the steps of providing a substrate, screen printing a first conducting layer on the substrate, sintering the first conducting layer, screen printing an isolation layer on the first conducting layer and a second conducting layer on the isolation layer, etching the second conducting layer and the isolation layer, whereby a cavity exposing the first conducting layer is formed, sintering the second conducting layer and the isolation layer, and forming a carbon nanotube layer on the first conducting layer in the cavity.
    Type: Application
    Filed: October 17, 2001
    Publication date: March 6, 2003
    Inventors: Yu-Yang Chang, Jyh-Rong Sheu, Chun-Tao Lee, Cheng-Chung Lee
  • Publication number: 20020135295
    Abstract: A field emission display panel that utilizes nanotube emitters as electron sources and is equipped with two cathodes i.e. a primary cathode and an auxiliary cathode, and an anode is provided. The nanotube emitters can be suitably formed by nanometer-dimensioned hollow tubes of carbon, diamond or diamond-like carbon mixed in a polymeric-based binder. The nanotube emitters are formed in two parallelly-positioned, spaced-apart rows on top of an electrode layer such as a silver paste by a thick film printing technique. Since both the primary cathode and the anode are formed on the bottom glass plate, the operating voltage can be controlled by the thickness of the dielectric layer that is used in forming the nanotube emitter stacks. An auxiliary cathode formed of an electrically conductive material is coated on the interior surface of a top glass plate to further repel electrons in a downward direction toward the anode on the bottom glass plate.
    Type: Application
    Filed: March 20, 2001
    Publication date: September 26, 2002
    Applicant: Industrial Technology Research Institute
    Inventors: Wen-Chun Wang, Cheng-Chung Lee, Feng-Yu Chuang, Jane-Hway Liao, Jyh-Rong Sheu, Cheng-hsiem Han
  • Patent number: 6436221
    Abstract: A method of CNT field emission current density improvement performed by a taping process is disclosed. The method comprises following steps. First of all, a conductive pattern coated on a substrate by screen-printing a conductive slurry containing silver through a patterned screen is carried out. Thereafter, a CNT layer is attached thereon by screen-printing a CNT paste through a mesh pattern screen to form CNT image pixel array layer. The CNT paste consists of organic bonding agent, resin, silver powder, and carbon nano-tubes. After that the substrate is soft baked by an oven using a temperature of about 50-200° C. to remove volatile organic solvent. A higher temperature sintering process, for example 350-550° C. is then carried out to solidify the CNT on and electric coupled with the conductive pattern.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: August 20, 2002
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Yang Chang, Jyh-Rong Sheu, Cheng-Chung Lee
  • Publication number: 20020104603
    Abstract: A method of CNT field emission current density improvement performed by a taping process is disclosed. The method comprises following steps. First of all, a conductive pattern coated on a substrate by screen-printing a conductive slurry containing silver through a patterned screen is carried out. Thereafter, a CNT layer is attached thereon by screen-printing a CNT paste through a mesh pattern screen to form CNT image pixel array layer. The CNT paste consists of organic bonding agent, resin, silver powder, and carbon nano-tubes. After that the substrate is soft baked by an oven using a temperature of about 50-200° C. to remove volatile organic solvent. A higher temperature sintering process, for example 350-550° C. is then carried out to solidify the CNT on and electric coupled with the conductive pattern.
    Type: Application
    Filed: February 7, 2001
    Publication date: August 8, 2002
    Inventors: Yu-Yang Chang, Jyh-Rong Sheu, Cheng-Chung Lee