Patents by Inventor Kadaba Lakshmikumar

Kadaba Lakshmikumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170244416
    Abstract: Embodiments herein describe a reference-less CDR circuit that receives electrical signals that may have been transmitted along either an electrical or optical interconnect which are then processed to identify the original data. To do so, the CDR circuit includes a frequency locking loop (FLL) and a phase locking loop (PLL) which generate control signals for a voltage controlled oscillator (VCO). In one embodiment, the FLL generates a coarse adjustment signal which the VCO uses to output a recovered clock that substantially matches the frequency of the received electrical signal. The PLL, on the other hand, generates a fine adjustment signal which the VCO uses to make small adjustments (e.g., half cycle phase shifts) to the recovered clock. The recovered clock outputted by the VCO is then fed back and used as an input in both the FLL and the PLL.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventors: Kadaba LAKSHMIKUMAR, Mark Y. TSE, Bibhu DAS, Bipin DAMA
  • Patent number: 9654061
    Abstract: Embodiments generally relate to a conversion arrangement, a driver arrangement, and a method of producing a complementary complementary metal-oxide-semiconductor (CMOS) output signal for driving a modulator device. The conversion arrangement includes a differential amplifier configured to produce a first amplified signal based on the differential input signal, and at least two transimpedance amplifiers (TIAs) coupled with respective outputs of the differential amplifier and configured to produce a second amplified signal based on the first amplified signal. Respective bias voltages for the TIAs are based on the first amplified signal. The conversion arrangement further includes a common-mode feedback arrangement coupled with outputs of the TIAs and configured to control the first amplified signal based on the second amplified signal, thereby controlling the bias voltages, wherein the complementary CMOS output signal is based on the second amplified signal.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: May 16, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Kadaba Lakshmikumar, Craig Appel
  • Patent number: 9397687
    Abstract: In one implementation, a digital analog converter (DAC) is monotonic because the output moves only in the direction of the input and segmented because a more significant portion of the DAC is separated from a less significant portion. The DAC receives an input binary word that includes multiple most significant bits and multiple least significant bits. The DAC decodes the input binary word to an intermediate signal that includes a bit width equal to or greater than a bit width of the binary word. The intermediate signal sets output switches and current source switches. The DAC provides an analog output signal that represents the input binary word.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 19, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Kadaba Lakshmikumar, Mark Y. Tse
  • Publication number: 20160126971
    Abstract: In one implementation, a digital analog converter (DAC) is monotonic because the output moves only in the direction of the input and segmented because a more significant portion of the DAC is separated from a less significant portion. The DAC receives an input binary word that includes multiple most significant bits and multiple least significant bits. The DAC decodes the input binary word to an intermediate signal that includes a bit width equal to or greater than a bit width of the binary word. The intermediate signal sets output switches and current source switches. The DAC provides an analog output signal that represents the input binary word.
    Type: Application
    Filed: January 8, 2016
    Publication date: May 5, 2016
    Inventors: Kadaba Lakshmikumar, Mark Y. Tse
  • Publication number: 20160112016
    Abstract: Embodiments generally relate to a conversion arrangement, a driver arrangement, and a method of producing a complementary complementary metal-oxide-semiconductor (CMOS) output signal for driving a modulator device. The conversion arrangement includes a differential amplifier configured to produce a first amplified signal based on the differential input signal, and at least two transimpedance amplifiers (TIAs) coupled with respective outputs of the differential amplifier and configured to produce a second amplified signal based on the first amplified signal. Respective bias voltages for the TIAs are based on the first amplified signal. The conversion arrangement further includes a common-mode feedback arrangement coupled with outputs of the TIAs and configured to control the first amplified signal based on the second amplified signal, thereby controlling the bias voltages, wherein the complementary CMOS output signal is based on the second amplified signal.
    Type: Application
    Filed: April 29, 2015
    Publication date: April 21, 2016
    Inventors: Kadaba LAKSHMIKUMAR, Craig APPEL
  • Publication number: 20160065234
    Abstract: In one implementation, a digital analog converter (DAC) is monotonic because the output moves only in the direction of the input and segmented because a more significant portion of the DAC is separated from a less significant portion. The DAC receives an input binary word that includes multiple most significant bits and multiple least significant bits. The DAC decodes the input binary word to an intermediate signal that includes a bit width equal to or greater than a bit width of the binary word. The intermediate signal sets output switches and current source switches. The DAC provides an analog output signal that represents the input binary word.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Kadaba Lakshmikumar, Mark Y. Tse
  • Patent number: 9258010
    Abstract: In one implementation, a digital analog converter (DAC) is monotonic because the output moves only in the direction of the input and segmented because a more significant portion of the DAC is separated from a less significant portion. The DAC receives an input binary word that includes multiple most significant bits and multiple least significant bits. The DAC decodes the input binary word to an intermediate signal that includes a bit width equal to or greater than a bit width of the binary word. The intermediate signal sets output switches and current source switches. The DAC provides an analog output signal that represents the input binary word.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 9, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Kadaba Lakshmikumar, Mark Y. Tse
  • Patent number: 8344761
    Abstract: Included are embodiments of a 3-level line driver. At least one embodiment of a method includes generating a repetitive wave; receiving an input signal and a complement of the input signal; providing a 3-level output signal; and filtering a feedback signal, the means for filtering including at least one of the following: a 0th order filter, and an even order filter.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: January 1, 2013
    Assignee: Ikanos Communications, Inc.
    Inventors: Kadaba Lakshmikumar, Sander Laurentius Johannes Gierkink
  • Patent number: 7701301
    Abstract: Systems and methods for implementing a temperature compensated two-stage ring oscillator are described. At least one embodiment includes a system for generating a clock signal comprising a self-starting oscillator comprising two delay stages in a ring configuration. The two-stage ring oscillator is configured to generate the clock signal, wherein the delay stages are configured such that the two-stage ring oscillator has a single right-half plane (RHP) pole in each of the two delay stages where feedback is always positive. For some embodiments, the system further comprises a compensation module configured to sense temperature and process variations and adjust a supply voltage for the two-stage ring oscillator to compensate for temperature and process variations in order to maintain a constant frequency clock signal. For such embodiments, the compensation module comprises a replica circuit configured to mirror operation of the n-channel devices within the two-stage ring oscillator.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: April 20, 2010
    Assignee: Conexant Systems, Inc.
    Inventors: Kadaba Lakshmikumar, Vinod Mukundagiri
  • Publication number: 20100073063
    Abstract: Included are embodiments of a 3-level line driver. At least one embodiment of a method includes generating a repetitive wave; receiving an input signal and a complement of the input signal; providing a 3-level output signal; and filtering a feedback signal, the means for filtering including at least one of the following: a 0th order filter, and an even order filter.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 25, 2010
    Applicant: IKANOS COMMUNICATIONS, INC.
    Inventors: Kadaba Lakshmikumar, Sander Laurentius Johannes Gierkink
  • Publication number: 20080061893
    Abstract: Systems and methods for implementing a temperature compensated two-stage ring oscillator are described. At least one embodiment includes a system for generating a clock signal comprising a self-starting oscillator comprising two delay stages in a ring configuration. The two-stage ring oscillator is configured to generate the clock signal, wherein the delay stages are configured such that the two-stage ring oscillator has a single right-half plane (RHP) pole in each of the two delay stages where feedback is always positive. For some embodiments, the system further comprises a compensation module configured to sense temperature and process variations and adjust a supply voltage for the two-stage ring oscillator to compensate for temperature and process variations in order to maintain a constant frequency clock signal. For such embodiments, the compensation module comprises a replica circuit configured to mirror operation of the n-channel devices within the two-stage ring oscillator.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 13, 2008
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Kadaba Lakshmikumar, Vinod Mukundagiri
  • Publication number: 20050083091
    Abstract: Circuits for adjusting the duty cycle of a clock(s) signal include a negative feedback loop for applying an offset signal to the uncorrected clock signal(s). The offset signal, which corresponds to a duty cycle error of the corrected clock signal(s), adjusts the slicing level of the uncorrected clock signal(s) to cause the duty cycle error to converge toward a predetermined value, for example, zero. The techniques may be used to adjust the duty cycle error of differential clock signals as well as single-ended clock signals.
    Type: Application
    Filed: November 9, 2004
    Publication date: April 21, 2005
    Inventors: Kadaba Lakshmikumar, Gong Gu