Patents by Inventor Kah-Young Song
Kah-Young Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8435693Abstract: A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.Type: GrantFiled: November 19, 2010Date of Patent: May 7, 2013Assignee: Samsung SDI Co. Ltd.Inventors: Kah-Young Song, Sang-Il Han, Jin-Hwa Lee, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20130078545Abstract: A fuel cell stack is disclosed. The fuel cell stack includes a membrane electrode assembly, separation plates on either side of the membrane electrode assembly, current collectors on either side of the separation plates and configured to electrically convey current to an outside circuit, first and second end plates sandwiching the current collectors and configured to apply a connecting pressure, and manifolds formed to pass through the membrane electrode assembly, at least one of the separation plates, at least one of the current collectors, and at least one of the end plates, the manifolds configured to conduct reaction gas, and cutoff blocks inserted into a portion forming manifolds of the end plates to separate the current collectors and the end plates on a passage in which the reaction gas is circulated.Type: ApplicationFiled: October 14, 2011Publication date: March 28, 2013Applicant: Samsung SDI Co., Ltd.Inventors: Seong-Jin An, Jin-Hwa Lee, Kah-Young Song, Yasuki Yoshida, Hee-Tak Kim
-
Publication number: 20130071768Abstract: A membrane electrode assembly including an electrolyte membrane; a catalyst layer on the electrolyte membrane; a gas diffusion layer attached to the catalyst layer; and an adhesive layer between the electrolyte membrane and the gas diffusion layer around an outer edge of the catalyst layer, and a fuel cell stack including a plurality of unit cells, each including one of the membrane electrode assemblies.Type: ApplicationFiled: April 25, 2012Publication date: March 21, 2013Inventors: Kah-Young Song, Sung-Yong Cho, Hee-Tak Kim, Tae-Yoon Kim, Myoung-Ki Min, Jun-Young Kim
-
Publication number: 20130040222Abstract: A catalyst layer composition for a fuel cell includes an ionomer cluster, a catalyst, and a solvent including water and polyhydric alcohol; and an electrode for a fuel cell includes a catalyst layer comprising an ionomer cluster having a three-dimensional reticular structure, and a catalyst, a method of preparing a electrode for a fuel cell includes a catalyst layer comprising an ionomer cluster having a three-dimensional reticular structure, and a catalyst, and a membrane-electrode assembly for a fuel cell including the electrode and a fuel cell system including the membrane-electrode assembly.Type: ApplicationFiled: August 10, 2012Publication date: February 14, 2013Applicant: SAMSUNG SDI CO., LTD.Inventors: Tae-Yoon Kim, Sang-Il Han, Sung-Yong Cho, Hee-Tak Kim, Kah-Young Song, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20130017461Abstract: An electrode for a fuel cell is disclosed. The electrode may include an electrode substrate with a conductive substrate, carbon particles, and a catalyst layer disposed on the electrode substrate. The electrode substrate may include a pore having an average diameter of about 20 ?m to about 40 ?m and porosity of about 30 volume % to about 80 volume % based on the total volume of the electrode substrate. A membrane-electrode assembly including the electrode and a fuel cell system including the membrane electrode assembly are also disclosed.Type: ApplicationFiled: December 29, 2011Publication date: January 17, 2013Applicant: SAMSUNG SDI CO., LTD.Inventors: Sang-II HAN, Kah-Young SONG, Hee-Tak KIM, Sung-Yong CHO, Tae-Yoon KIM, Myoung-Ki MIN, Geun-Seok CHAI
-
Publication number: 20120034549Abstract: A fuel cell separator and a fuel cell system including the same. The separator includes a main body including a plurality of cell barriers and a flow channel disposed between the cell bathers, and a hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel of the main body. The hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel has a contact angle less than a contact angle of a side surface of at least one of the cell barriers by approximately 10° to approximately 60°.Type: ApplicationFiled: August 3, 2011Publication date: February 9, 2012Applicant: Samsung SDI Co., Ltd.Inventors: Hee-Tak Kim, Sung-Yong Cho, Kah-Young Song, Tae-Yoon Kim, Sang-Il Han, Geun-Seok Chai, Myoung-Ki Min
-
Publication number: 20120021325Abstract: A membrane-electrode assembly for a fuel cell, the membrane-electrode assembly including an electrolyte membrane; an edge protective layer located at generally an edge of the electrolyte membrane; and a catalytic layer including a plate portion contacting the electrolyte membrane and a protruding portion protruding from the plate portion and contacting the edge protective layer.Type: ApplicationFiled: March 15, 2011Publication date: January 26, 2012Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Geun-Seok Chai, Myoung-Ki Min
-
Publication number: 20120015261Abstract: A fuel cell system having improved driving performance is disclosed. The fuel cell system includes a stack, which may include a membrane electrode assembly, a separator and end plates provided on the both sides of the stacked membrane electrode assembly and the separator. The membrane electrode assembly may include an anode electrode, a cathode electrode, and an electrolyte membrane. The separator may be positioned with respect to the anode electrode and the cathode electrode, respectively. The end plate may include an oxidant inlet configured to supply oxidant to the cathode electrode, an unreacted oxidant outlet configured to output the unreacted oxidant from the cathode electrode, and a absorption member in fluid communication between the oxidant inlet and the unreacted oxidant outlet.Type: ApplicationFiled: June 20, 2011Publication date: January 19, 2012Applicant: SAMSUNG SDI CO., LTD.Inventors: Sang-Il HAN, Kah-Young SONG, Jin-Hwa LEE, Myoung-Ki MIN, Young-Mi PARK
-
Publication number: 20110305965Abstract: A stack for a fuel cell system, including: a membrane electrode assembly, a separator that includes a fuel passage that supplies a fuel to an anode electrode of the membrane electrode assembly and an oxidant passage that supplies an oxidant to a cathode electrode of an adjacent membrane electrode assembly, a first manifold that is formed by connecting first penetration holes that penetrate the separator in a stacking direction and that is connected to the fuel passage, a second manifold that is formed by connecting second penetration holes that penetrate the separator in the stacking direction and that is connected to the oxidant passage and a baffle that is disposed in at least one of the first manifold and the second manifold. The baffle has a membrane structure to control the fluid flow inside of the at least one of the first manifold and the second manifold.Type: ApplicationFiled: May 27, 2011Publication date: December 15, 2011Inventors: Jin-Hwa Lee, Chi-Seung Lee, Seong-Jin An, Sang-Il Han, Kah-Young Song
-
Publication number: 20110305969Abstract: A fuel cell stack including membrane-electrode assemblies and separators formed between each of the membrane-electrode assemblies is disclosed. The membrane-electrode assemblies may each include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. Each of the separators may include an anode separator facing the anode and a cathode separator facing the cathode. Each of the separators may include at least two manifolds, a channel separated from the manifolds and facing either the anode or the cathode, and a connection channel fluidly connecting the manifold and the channel. The separator may also include a buffer protrusion system in the connection channel configured to disperse the flow of the fuel or the oxidant.Type: ApplicationFiled: November 22, 2010Publication date: December 15, 2011Applicant: SAMSUNG SDI CO., LTD.Inventors: Kah-Young Song, Jin-Hwa Lee, Sang-Il Han, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20110305966Abstract: A fuel cell stack including an electricity generating unit and a pair of end plates is disclosed. The electricity generating unit includes membrane-electrode assemblies and separators interposed between the membrane-electrode assemblies. The separators have recess portions formed on side faces thereof and may be configured to hold an external device for replacement of a single membrane-electrode assembly within the fuel cell stack. The end plates are located sandwiching the electricity generating unit by using fastening members to press the electricity generating unit.Type: ApplicationFiled: November 24, 2010Publication date: December 15, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Myoung-Ki Min, Hee-Tak Kim, Geun-Seok Chai, Sang-Il Han, Tae-Yoon Kim, Sung-Yong Cho, Kah-Young Song
-
Publication number: 20110305960Abstract: A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.Type: ApplicationFiled: November 19, 2010Publication date: December 15, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Kah-Young Song, Sang-Il Han, Jin-Hwa Lee, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20110305968Abstract: A fuel cell stack includes: a plurality of membrane-electrode assemblies; first and second end plates respectively positioned outside outermost ones of the membrane-electrode assemblies; and a plurality of separators respectively positioned between the membrane-electrode assemblies and between the outermost ones of the membrane-electrode assemblies and the first and second end plates. The first end plate includes an oxidizing agent inlet, an oxidizing agent outlet, and a moisture supplying flow path connecting the oxidizing agent inlet and the oxidizing agent outlet. The moisture supplying flow path includes a first end portion adjacent to the oxidizing agent outlet and a second end portion adjacent to the oxidizing agent inlet, the first end portion being larger than the second end portion and being a different distance away from a surface of the first end plate facing away from the second end plate than the second end portion.Type: ApplicationFiled: December 29, 2010Publication date: December 15, 2011Inventors: Jin-Hwa LEE, Chi-Seung Lee, Seong-Jin An, Sang-II Han, Kah-Young Song
-
Publication number: 20110244363Abstract: An electrode catalyst for a fuel cell including a carbon-based carrier and an active metal supported in the carrier, for example, an electrode catalyst for a fuel cell includes a carrier and an active metal supported in the carrier, wherein the electrode catalyst has an X value of 95 to 100% in Equation 1. X(%)=(XPS measurement value)/(TGA measurement value)×100??[Equation 1] wherein, the XPS measurement value represents a quantitative amount of the active metal present on a surface of the electrode catalyst, the TGA measurement value represents the XPS measurement value using a monochromated Al K?-ray, which is the quantitative amount of total active metal supported in the catalyst.Type: ApplicationFiled: November 12, 2010Publication date: October 6, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Myoung-Ki MIN, Geun-Seok CHAI, Hee-Tak KIM, Tae-Yoon KIM, Sang-Il HAN, Kah-Young SONG, Sung-Yong CHO
-
Publication number: 20110244362Abstract: A catalyst for a fuel cell including a carrier and an active metal dispersion that is supported in the carrier is disclosed. The catalyst may have a dispersity (Dp) represented by General Formula 1 and that ranges from between about 0.01 to about 1.0. Dispersity(Dp)={X?X10/(X1?B)}*(B/X)2??[General Formula 1] In the General Formula 1, X, X10, X1, and B are defined the same as described in the specification. A membrane-electrode assembly, and a fuel cell system having the catalyst are also disclosed.Type: ApplicationFiled: July 26, 2010Publication date: October 6, 2011Applicant: SAMSUNG SDI CO., LTD.Inventors: Myoung-Ki MIN, Geun-Seok CHAI, Hee-Tak KIM, Tae-Yoon KIM, Sang-Il HAN, Sung-Yong CHO, Kah-Young SONG
-
Publication number: 20110229785Abstract: A fuel cell stack includes a plurality of membrane electrode assemblies, each of the membrane electrode assemblies having an electrolyte membrane; an anode on a first side of the electrolyte membrane; and a cathode on a second side of the electrolyte membrane opposite to the first side, wherein the anode and the cathode each comprise a gas diffusion layer divided into at least two areas such that a first area and a second area have different area densities; and a separator between adjacent membrane electrode assemblies.Type: ApplicationFiled: June 8, 2010Publication date: September 22, 2011Inventors: Kah-Young Song, Hee-Tak Kim, Sang-Il Han, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20110223515Abstract: A membrane-electrode assembly for a fuel cell is disclosed. The membrane-electrode assembly may include a polymer electrolyte membrane, an adhesive layer disposed on the polymer electrolyte membrane and a catalyst layer formed, as part of the adhesive layer. The polymer electrolyte membrane, the adhesive layer and the catalyst layer may be positioned between a cathode substrate and an anode substrate. The cathode may include a cathode substrate and the anode may include an anode substrate. A method for manufacturing a membrane-electrode assembly and a system incorporating a membrane-electrode assembly are also disclosed.Type: ApplicationFiled: October 21, 2010Publication date: September 15, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Sang-Il Han, Kah-Young Song, Geun-Seok Chai, Myoung-Ki Min
-
Publication number: 20110195331Abstract: A fuel cell stack includes membrane-electrode assemblies and separators that are closely disposed to both sides of the membrane-electrode assembly. Each membrane-electrode assembly includes an electrolyte membrane, an anode electrode that is formed on one surface of the electrolyte membrane, a cathode electrode that is formed on the other surface of the electrolyte membrane, and a protective layer formed at an oxidant inlet region where oxidant is first injected into the respective cathode electrode.Type: ApplicationFiled: June 17, 2010Publication date: August 11, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Kah-Young SONG, Jin-Hwa Lee, Sang-Il Han, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
-
Publication number: 20110053029Abstract: A membrane electrode assembly for a fuel cell that secures a flow path of a separator while preventing generation of a pin-hole. The membrane electrode assembly includes an electrolyte membrane for a fuel cell, a microporous layer that is disposed at both surfaces of the electrolyte membrane, a backing layer that is disposed on the microporous layer, and a circumferential edge protective layer that is disposed at an circumferential edge of the electrolyte membrane. An end portion of the microporous layer is positioned further inside of the membrane electrode assembly than an end portion of the backing layer. The circumferential edge protective layer is inserted between the backing layer and the electrolyte membrane.Type: ApplicationFiled: July 28, 2010Publication date: March 3, 2011Applicant: Samsung SDI Co., Ltd.Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Myoung-Ki Min, Geun-Seok Chai, Soon-Cheol Shin
-
Publication number: 20100330453Abstract: A polymer electrolyte membrane for a fuel cell has a crystalline fusion enthalpy measured by differential scanning calorimetry (DSC) of about 67.3 J/g or more. Such crystallinity improves dimensional stability, mechanical characteristics, and ion conductivity of the polymer electrolyte membrane.Type: ApplicationFiled: June 21, 2010Publication date: December 30, 2010Applicant: Samsung SDI Co., Ltd.Inventors: Sang-Il Han, Tae-Yoon Kim, Hee-Tak Kim, Kah-Young Song, Myoung-Ki Min, Sung-Yong Cho, Geun-Seok Chai