Patents by Inventor Kai-Hung Lau

Kai-Hung Lau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9101896
    Abstract: In one embodiment, the present disclosure relates generally to a method for thermally decomposing a complex precursor salt. In one embodiment, the method includes heating a salt in a reactor until a molten salt is formed, adding the complex precursor salt to the molten salt in the reactor and removing a volatile precursor halide formed from thermal decomposition of the complex precursor salt from the reactor.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: August 11, 2015
    Assignee: SRI INTERNATIONAL
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Marc Hornbostel, Xiaobing Xie, Lorenza Moro, Jordi Perez Mariano, Gopala N. Krishnan
  • Patent number: 8709370
    Abstract: The present invention relates generally to production of a fluoride gas and equivalents thereof, and fluorine-doped sodium silicate glass, glass ceramics, vitro ceramics and equivalents thereof. In one embodiment, the method includes providing a salt and an oxide in a reactor, heating the reactor to produce a vapor and the vitro ceramic and removing the vapor.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 29, 2014
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Gopala Krishnan
  • Patent number: 8475540
    Abstract: In one embodiment, the present invention relates generally to a multi-stage system for performing melt coalescence and separation, the multi-stage system. In one embodiment, the multi-stage system includes a first container for mixing a powder with a salt, the first container having an opening, a heating means coupled to the first container for heating the first container and a second container coupled to the first container.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: July 2, 2013
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Lorenza Moro, Jordi Perez Mariano, Gopala N. Krishnan, Marc Hornbostel, Anoop Nagar
  • Patent number: 8465809
    Abstract: A moving bed reactor system is provided. The system comprises at least one gas inlet, a distributor, a temperature control, a plurality of electrodes, and a spark control circuit. The spark control circuit drives the electrodes and generates a multi-arc discharge when the system is loaded with particles and a gas at approximately atmospheric pressure or greater is being pumped through the system. The multi-arc discharge is useful to create activated species which may improve the rate of a chemical reaction taking place in the moving bed reactor system.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: June 18, 2013
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kazunori Matsumoto, Carles Colominas, Gopala Krishnan, Palitha Jayaweera, Kai-Hung Lau
  • Publication number: 20120009116
    Abstract: In one embodiment, the present disclosure relates generally to a method for thermally decomposing a complex precursor salt. In one embodiment, the method includes heating a salt in a reactor until a molten salt is formed, adding the complex precursor salt to the molten salt in the reactor and removing a volatile precursor halide formed from thermal decomposition of the complex precursor salt from the reactor.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: ANGEL SANJURJO, Kai-Hung LAU, Marc HORNBOSTEL, Xiaobing XIE, Lorenza MORO, Jordi Perez MARIANO, Gopala N. KRISHNAN
  • Patent number: 7959707
    Abstract: Aspects of the invention include methods for producing purified semiconductor or metallic materials. In one embodiment, the methods include admixing a particulate composition of a material, for instance, a metal, with a metal halide to produce a metal-metal halide admixture. The admixture is then heated to a temperature that is above the material's melting point in a container that is chemically and physically stable at that temperature. The molten admixture is allowed to segregate into a lower of the material and an layer of the metal halide and cooled. The metal halide is then separated from the material and a purified semiconductor or metallic material is thereby produced. Also provided are purified material crystals, shaped ingots and/or taper, sheet, or ribbons produced by such methods, as well as the silicon chips and solar panels in which such products are employed.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: June 14, 2011
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Anoop Nagar
  • Publication number: 20110038779
    Abstract: In one embodiment, the present invention relates generally to a multi-stage system for performing melt coalescence and separation, the multi-stage system. In one embodiment, the multi-stage system includes a first container for mixing a powder with a salt, the first container having an opening, a heating means coupled to the first container for heating the first container and a second container coupled to the first container.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Lorenza Moro, Jordi Perez Mariano, Gopala N. Krishnan, Marc Hornbostel, Anoop Nagar
  • Publication number: 20110008235
    Abstract: In one embodiment, the present invention relates generally to a method for reutilizing ionic halides in a production of an elemental material. In one embodiment, the method includes reacting a mixture of an ionic halide, at least one of: an oxide, suboxide or an oxyhalide of an element to be produced and an aqueous acid solution at moderate temperature to form a complex precursor salt and a salt, forming a precursor halide from the complex precursor salt, reducing the precursor halide into the element to be produced and the ionic halide and returning the ionic halide into the mixture of the reacting step.
    Type: Application
    Filed: July 8, 2009
    Publication date: January 13, 2011
    Inventors: Angel Sanjurjo, Lorenza Moro, Jordi Perez Mariano, Kai-Hung Lau, Xiaobing Xie, Anoop Nagar, Marc Hornbostel, Gopala N. Krishnan
  • Publication number: 20100103765
    Abstract: The present invention relates generally to a liquid injector for silicon production. In one embodiment, the injector includes a tube having at least one opening at a first end of said tube, a moveable sealing means disposed inside the tube for sealing the at least one opening and a heating means coupled to the tube for controlling a temperature of a liquid exiting the tube through the at least one opening.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 29, 2010
    Inventors: MARC D. HORNBOSTEL, Angel Sanjurjo, Kai-Hung Lau, Gopala N. Krishnan, Anoop Nagar, Lorenza Moro, Jordi Perez Mariano, Xiaobing Xie, William C. Olson
  • Publication number: 20100056353
    Abstract: The present invention relates generally to production of a fluoride gas and equivalents thereof, and fluorine-doped sodium silicate glass, glass ceramics, vitro ceramics and equivalents thereof. In one embodiment, the method includes providing a salt and an oxide in a reactor, heating the reactor to produce a vapor and the vitro ceramic and removing the vapor.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Gopala Krishnan
  • Publication number: 20090291235
    Abstract: A moving bed reactor system is provided. The system comprises at least one gas inlet, a distributor, a temperature control, a plurality of electrodes, and a spark control circuit. The spark control circuit drives the electrodes and generates a multi-arc discharge when the system is loaded with particles and a gas at approximately atmospheric pressure or greater is being pumped through the system. The multi-arc discharge is useful to create activated species which may improve the rate of a chemical reaction taking place in the moving bed reactor system.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 26, 2009
    Inventors: Angel Sanjurjo, Kazunori Matsumoto, Carles Colominas, Gopala Krishnan, Palitha Jayaweera, Kai-Hung Lau
  • Patent number: 7559969
    Abstract: The present invention is generally directed towards a method for producing a solid metallic composition by reacting a gaseous metal halide with a reducing agent are described. In one embodiment, the method includes reacting a gaseous metal halide with a reducing agent in a manner effective to form a nonsolid reaction product, wherein the metal halide has the formula MXi, in which M is a metal selected from a transition metal of the periodic table, aluminum, silicon, boron, and combinations thereof, X is a halogen, i is greater than 0, and the reducing agent is a gaseous reducing agent selected from hydrogen and a compound that releases hydrogen, and combinations thereof; and solidifying the reaction product, thereby forming a metallic composition comprising M that is substantially free from halides. The invention may be used to produce high-purity metallic compositions, particularly titanium particles and alloys thereof for use in powder metallurgy applications.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: July 14, 2009
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Eugene Thiers, Kai-Hung Lau, Don L. Hildenbrand, Gopala N. Krishnan, Esperanza Alvarez
  • Publication number: 20070266826
    Abstract: Aspects of the invention include methods for producing purified semiconductor or metallic materials. In one embodiment, the methods include admixing a particulate composition of a material, for instance, a metal, with a metal halide to produce a metal-metal halide admixture. The admixture is then heated to a temperature that is above the material's melting point in a container that is chemically and physically stable at that temperature. The molten admixture is allowed to segregate into a lower of the material and an layer of the metal halide and cooled. The metal halide is then separated from the material and a purified semiconductor or metallic material is thereby produced. Also provided are purified material crystals, shaped ingots and/or taper, sheet, or ribbons produced by such methods, as well as the silicon chips and solar panels in which such products are employed.
    Type: Application
    Filed: April 30, 2007
    Publication date: November 22, 2007
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Anoop Nagar
  • Publication number: 20050097991
    Abstract: Methods and apparatuses for producing a solid metallic composition by reacting a gaseous metal halide with a reducing agent are described. The method generally includes reacting a gaseous metal halide with a reducing agent in a manner effective to form a nonsolid reaction product, wherein the metal halide has the formula MXi, in which M is a metal selected from a transition metal of the periodic table, aluminum, silicon, boron, and combinations thereof, X is a halogen, i is greater than 0, and the reducing agent is a gaseous reducing agent selected from hydrogen and a compound that releases hydrogen, and combinations thereof; and solidifying the reaction product, thereby forming a metallic composition comprising M that is substantially free from halides.
    Type: Application
    Filed: August 6, 2004
    Publication date: May 12, 2005
    Inventors: Angel Sanjurjo, Eugene Thiers, Kai-Hung Lau, Don Hildenbrand, Gopala Krishnan, Esperanza Alvarez
  • Patent number: 6725911
    Abstract: A condensing heat exchanger structure in contact with a combustion environment and which structure includes a ferrous substrate is provided with a corrosion resistant diffusion coating applied to the ferrous substrate via a fluidized bed application. Also provided is a method for improving the corrosion resistance of a condensing heat exchanger structure which includes a ferrous substrate and a surface portion at least partially exposed to a combustion product-containing environment. In such method, a corrosion resistant diffusion coating is applied onto the ferrous substrate via a fluidized bed application.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: April 27, 2004
    Assignee: Gas Research Institute
    Inventors: Palitha Jayaweera, Angel Sanjurjo, Kai-Hung Lau
  • Publication number: 20030066631
    Abstract: A condensing heat exchanger structure in contact with a combustion environment and which structure includes a ferrous substrate is provided with a corrosion resistant diffusion coating applied to the ferrous substrate via a fluidized bed application. Also provided is a method for improving the corrosion resistance of a condensing heat exchanger structure which includes a ferrous substrate and a surface portion at least partially exposed to a combustion product-containing environment. In such method, a corrosion resistant diffusion coating is applied onto the ferrous substrate via a fluidized bed application.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 10, 2003
    Inventors: Palitha Jayaweera, Angel Sanjurjo, Kai-Hung Lau
  • Patent number: 6416721
    Abstract: Fluidized bed reactors having centrally positioned heating means, as well as methods for their use, are provided. The subject reactors comprise a centrally positioned heating means (e.g. a susceptor rod) that, during operation, is at least partially immersed in a fluidized bed of particles. The subject reactors are further characterized in that, during use, a temperature gradient is produced within the reactor. The subject reactors find use in a variety of applications.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: July 9, 2002
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kai Hung Lau
  • Patent number: 6399216
    Abstract: A method for coating stainless steel in which a metallic material layer of Cr and alloys of Cr and at least one of Mo, W, Ni, Si, Ti, Zr is deposited onto a metal substrate. The metallic material layer is then annealed so as to form a diffusion layer between the metallic protective coating and the metal substrate. Thereafter, the metallic material layer may be passivated, forming a stable composition of at least one of carbides, borides, nitrides, silicides, oxides, and mixtures thereof on the metallic protective coating. The protective coatings of this invention significantly reduce the corrosion rate of stainless steel used in bromide-based absorption systems.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: June 4, 2002
    Assignee: Gas Research Institute
    Inventors: Palitha Jayaweera, Angel Sanjurjo, Kai-Hung Lau, Naixiong Jiang, David M. Lowe
  • Publication number: 20010041217
    Abstract: Dry processes for coating titania particles, as well as the coated titania particles produced thereby, are provided. In the subject processes, a moving bed of titania particles is contacted with a gaseous first reactant under conditions sufficient for the first reactant to adsorb on the surface of the particles. Next, the particles having the first reactant adsorbed to their surface are contacted with a gaseous second reactant under conditions such that the second reactant reacts with the surface adsorbed first reactant to produce a product on the surface and in turn yield titania particles coated with a compact layer of the resultant product. The resultant coated titania particles find use in a variety of applications, including as pigments in paints and cosmetics.
    Type: Application
    Filed: October 1, 1999
    Publication date: November 15, 2001
    Inventors: ANGEL SANJURJO, KAI HUNG LAU
  • Patent number: 6039894
    Abstract: The invention relates to a method for producing activated, substantially monodisperse, phosphorescent particles and particles formed thereby. The method suspends substantially monodisperse, phosphor-precursor particles in a fluidizing gas and then introduces a reactive gas to contact the suspended phosphor-precursor particles. Heating the suspended phosphor-precursor particles to a reaction temperature then forms unactivated phosphorescent particles. In another embodiment, the phosphor-precursor particles may be heated to a reaction temperature where they decompose to form the unactivated phosphor particles. The unactivated phosphorescent particles suspended within the fluidizing gas are activated by heating the unactivated phosphorescent particles to an activation temperature forming activated, substantially monodisperse, phosphorescent particles.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: March 21, 2000
    Assignees: SRI International, STC Technologies
    Inventors: Angel Sanjurjo, Kai-Hung Lau, David Lowe, Anastasia Canizales, Naixiong Jiang, Victor Wong, Liqiang Jiang, Luke V. Schneider, Naheed Mufti, Robert T. Rewick, Marie Johansson, Keith Kardos