Patents by Inventor Kai-Jiun Chang
Kai-Jiun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250098557Abstract: A resistive random access memory device includes a substrate; a dielectric layer disposed on the substrate; a conductive via disposed in the dielectric layer; a metal nitride layer disposed on the conductive via, wherein the metal nitride has a gradient nitrogen concentration along a thickness direction of the metal nitride layer; a resistive switching layer disposed on the metal nitride layer; and a metal oxynitride layer disposed on the resistive switching layer, wherein the metal oxynitride layer has a gradient nitrogen concentration along a thickness direction of the metal oxynitride layer.Type: ApplicationFiled: October 16, 2023Publication date: March 20, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kai-Jiun Chang, Yu-Huan Yeh, Chuan-Fu Wang
-
Publication number: 20250048944Abstract: A resistive switching device includes a substrate, a first dielectric layer on the substrate, a conductive via in the first dielectric layer, and a resistive switching structure embedded in an upper portion of the conductive via. The resistive switching structure includes a top electrode layer having a lower sharp corner, a resistive switching material layer disposed around the lower sharp corner of the top electrode layer, and a bottom electrode layer disposed between the resistive switching material layer and the upper portion of the conductive via.Type: ApplicationFiled: August 25, 2023Publication date: February 6, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kai-Jiun Chang, Yu-Huan Yeh, Chuan-Fu Wang
-
Publication number: 20250008745Abstract: An RRAM structure includes a bottom electrode, a resistive switching layer, a top electrode, a spacer and a conductive line. The bottom electrode is a first cylinder. The resistive switching layer includes a second cylinder and a three-dimensional disk. A first bottom of the second cylinder directly contacts a top surface of the three-dimensional disk. The top electrode is a third cylinder. The third cylinder includes a top base, a second bottom base and a sidewall. The first cylinder is embedded within the second cylinder and the three-dimensional disk. The second cylinder is embedded within the third cylinder and the second bottom base of the third cylinder directly contacts the top surface of the three-dimensional disk. The spacer surrounds and directly contacts a side surface of the three-dimensional disk. The conductive line encapsulates the top base and the sidewall of the third cylinder.Type: ApplicationFiled: July 13, 2023Publication date: January 2, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kai-Jiun Chang, Yu-Huan Yeh, Chuan-Fu Wang
-
Patent number: 12075613Abstract: A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.Type: GrantFiled: January 6, 2022Date of Patent: August 27, 2024Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Yi-Wei Chen, Tzu-Chieh Chen, Chih-Chieh Tsai, Chia-Chen Wu, Kai-Jiun Chang, Yi-An Huang, Tsun-Min Cheng
-
Publication number: 20240164224Abstract: A ReRAM device includes an interlayer dielectric (ILD), a lower conductive plug, a resistance-switching element (RSE) and an upper conductive plug. The ILD has an upper surface. The lower conductive plug is disposed in the ILD, and has a top surface lower than the upper surface. The RSE is disposed above the top surface and electrically contacts with the top surface. The upper conductive plug is disposed above the RSE and electrically contacts with the RSE.Type: ApplicationFiled: December 16, 2022Publication date: May 16, 2024Inventors: Kai-Jiun CHANG, Yu-Huan YEH, Chuan-Fu WANG
-
Publication number: 20240107901Abstract: Provided is a resistive random access memory (RRAM). The resistive random access memory includes a plurality of unit structures disposed on a substrate. Each of the unit structures includes a first electrode, and a first metal oxide layer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. In addition, the resistive random access memory includes a second electrode. The second electrode is disposed on the plurality of unit structures and connected to the plurality of unit structures.Type: ApplicationFiled: December 5, 2023Publication date: March 28, 2024Applicant: United Microelectronics Corp.Inventors: Kai Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
-
Publication number: 20240057487Abstract: An RRAM includes a bottom electrode, a resistive switching layer and a top electrode. The bottom electrode includes an inverted T-shaped profile. The resistive switching layer covers the bottom electrode. The top electrode covers the resistive switching layer. The inverted T-shaped profile includes a bottom element and a vertical element. The vertical element is disposed on the bottom element. The shape of the vertical element includes a rectangle or a trapezoid.Type: ApplicationFiled: September 6, 2022Publication date: February 15, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Kai-Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
-
Patent number: 11882773Abstract: Provided are a resistive random access memory (RRAM) and a manufacturing method thereof. The resistive random access memory includes multiple unit structures disposed on a substrate. Each of the unit structures includes a first electrode, a first metal oxide layer, and a spacer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. The spacer is disposed on sidewalls of the first electrode and the first metal oxide layer. In addition, the resistive random access memory includes a second metal oxide layer and a second electrode. The second metal oxide layer is disposed on the unit structures and is connected to the unit structures. The second electrode is disposed on the second metal oxide layer.Type: GrantFiled: August 6, 2021Date of Patent: January 23, 2024Assignee: United Microelectronics Corp.Inventors: Kai Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
-
Patent number: 11877433Abstract: The present invention provides a storage node contact structure of a memory device comprising a substrate having a dielectric layer comprising a recess, a first tungsten metal layer, and an adhesive layer on the first tungsten metal layer and a second tungsten metal layer on the adhesive layer, wherein the second tungsten metal layer is formed by a physical vapor deposition (PVD).Type: GrantFiled: July 16, 2020Date of Patent: January 16, 2024Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Tsun-Min Cheng, Chih-Chieh Tsai, Tzu-Chieh Chen, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Yi-Wei Chen, Hsin-Fu Huang, Chi-Mao Hsu, Li-Wei Feng, Ying-Chiao Wang, Chung-Yen Feng
-
Patent number: 11799012Abstract: A method for fabricating semiconductor device includes the steps of first forming a silicon layer on a substrate and then forming a metal silicon nitride layer on the silicon layer, in which the metal silicon nitride layer includes a bottom portion, a middle portion, and a top portion and a concentration of silicon in the top portion is greater than a concentration of silicon in the middle portion. Next, a conductive layer is formed on the metal silicon nitride layer and the conductive layer, the metal silicon nitride layer, and the silicon layer are patterned to form a gate structure.Type: GrantFiled: September 4, 2020Date of Patent: October 24, 2023Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Chun-Chieh Chiu, Pin-Hong Chen, Yi-Wei Chen, Tsun-Min Cheng, Chih-Chien Liu, Tzu-Chieh Chen, Chih-Chieh Tsai, Kai-Jiun Chang, Yi-An Huang, Chia-Chen Wu, Tzu-Hao Liu
-
Publication number: 20230027508Abstract: Provided are a resistive random access memory (RRAM) and a manufacturing method thereof. The resistive random access memory includes multiple unit structures disposed on a substrate. Each of the unit structures includes a first electrode, a first metal oxide layer, and a spacer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. The spacer is disposed on sidewalls of the first electrode and the first metal oxide layer. In addition, the resistive random access memory includes a second metal oxide layer and a second electrode. The second metal oxide layer is disposed on the unit structures and is connected to the unit structures. The second electrode is disposed on the second metal oxide layer.Type: ApplicationFiled: August 6, 2021Publication date: January 26, 2023Applicant: United Microelectronics Corp.Inventors: Kai Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
-
Publication number: 20220130839Abstract: A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.Type: ApplicationFiled: January 6, 2022Publication date: April 28, 2022Applicants: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Yi-Wei Chen, Tzu-Chieh Chen, Chih-Chieh Tsai, Chia-Chen Wu, Kai-Jiun Chang, Yi-An Huang, Tsun-Min Cheng
-
Patent number: 11251187Abstract: A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.Type: GrantFiled: September 22, 2017Date of Patent: February 15, 2022Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Yi-Wei Chen, Tzu-Chieh Chen, Chih-Chieh Tsai, Chia-Chen Wu, Kai-Jiun Chang, Yi-An Huang, Tsun-Min Cheng
-
Patent number: 11222784Abstract: A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.Type: GrantFiled: March 27, 2020Date of Patent: January 11, 2022Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Tzu-Hao Liu, Yi-Wei Chen, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Po-Chih Wu, Pin-Hong Chen, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chien Liu, Chih-Chieh Tsai, Ji-Min Lin
-
Patent number: 11088023Abstract: A method of forming a semiconductor structure includes providing a material layer having a recess formed therein. A first tungsten metal layer is formed at a first temperature and fills the recess. An anneal process at a second temperature is then performed, wherein the second temperature is higher than the first temperature.Type: GrantFiled: March 21, 2018Date of Patent: August 10, 2021Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Tsun-Min Cheng, Yi-Wei Chen, Wei-Hsin Liu
-
Publication number: 20200403077Abstract: A method for fabricating semiconductor device includes the steps of first forming a silicon layer on a substrate and then forming a metal silicon nitride layer on the silicon layer, in which the metal silicon nitride layer includes a bottom portion, a middle portion, and a top portion and a concentration of silicon in the top portion is greater than a concentration of silicon in the middle portion. Next, a conductive layer is formed on the metal silicon nitride layer and the conductive layer, the metal silicon nitride layer, and the silicon layer are patterned to form a gate structure.Type: ApplicationFiled: September 4, 2020Publication date: December 24, 2020Inventors: Chun-Chieh Chiu, Pin-Hong Chen, Yi-Wei Chen, Tsun-Min Cheng, Chih-Chien Liu, Tzu-Chieh Chen, Chih-Chieh Tsai, Kai-Jiun Chang, Yi-An Huang, Chia-Chen Wu, Tzu-Hao Liu
-
Publication number: 20200350317Abstract: The present invention provides a storage node contact structure of a memory device comprising a substrate having a dielectric layer comprising a recess, a first tungsten metal layer, and an adhesive layer on the first tungsten metal layer and a second tungsten metal layer on the adhesive layer, wherein the second tungsten metal layer is formed by a physical vapor deposition (PVD).Type: ApplicationFiled: July 16, 2020Publication date: November 5, 2020Inventors: Pin-Hong Chen, Tsun-Min Cheng, Chih-Chieh Tsai, Tzu-Chieh Chen, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Yi-Wei Chen, Hsin-Fu Huang, Chi-Mao Hsu, Li-Wei Feng, Ying-Chiao Wang, Chung-Yen Feng
-
Patent number: 10804365Abstract: A method for fabricating semiconductor device includes the steps of first forming a silicon layer on a substrate and then forming a metal silicon nitride layer on the silicon layer, in which the metal silicon nitride layer includes a bottom portion, a middle portion, and a top portion and a concentration of silicon in the top portion is greater than a concentration of silicon in the middle portion. Next, a conductive layer is formed on the metal silicon nitride layer and the conductive layer, the metal silicon nitride layer, and the silicon layer are patterned to form a gate structure.Type: GrantFiled: May 22, 2018Date of Patent: October 13, 2020Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Chun-Chieh Chiu, Pin-Hong Chen, Yi-Wei Chen, Tsun-Min Cheng, Chih-Chien Liu, Tzu-Chieh Chen, Chih-Chieh Tsai, Kai-Jiun Chang, Yi-An Huang, Chia-Chen Wu, Tzu-Hao Liu
-
Patent number: 10756090Abstract: The present invention provides a storage node contact structure of a memory device comprising a substrate having a dielectric layer comprising a recess, a first tungsten metal layer, and an adhesive layer on the first tungsten metal layer and a second tungsten metal layer on the adhesive layer, wherein the second tungsten metal layer is formed by a physical vapor deposition (PVD).Type: GrantFiled: March 15, 2018Date of Patent: August 25, 2020Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.Inventors: Pin-Hong Chen, Tsun-Min Cheng, Chih-Chieh Tsai, Tzu-Chieh Chen, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Yi-Wei Chen, Hsin-Fu Huang, Chi-Mao Hsu, Li-Wei Feng, Ying-Chiao Wang, Chung-Yen Feng
-
Publication number: 20200227264Abstract: A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.Type: ApplicationFiled: March 27, 2020Publication date: July 16, 2020Inventors: Tzu-Hao Liu, Yi-Wei Chen, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Po-Chih Wu, Pin-Hong Chen, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chien Liu, Chih-Chieh Tsai, Ji-Min Lin