Patents by Inventor Kailash C. Jain

Kailash C. Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9276267
    Abstract: A cathode of a solid-oxide fuel cell includes a first ionic conducting layer, a second layer deposited over the first layer and formed from a mixed ionic and electronic conductor layer including an oxygen ion conducting phase, and a third layer deposited over the second layer and formed from a mixed ionic and electronic conductor layer. A sintering aid and pore formers are added to the second layer and the third layer to establish ionic, electronic, and gas diffusion paths that are contiguous. By adjusting the microstructure of the second and the third layer, a high performance low resistance cathode is formed that bonds well to the electrolyte, is highly electro-catalytic, and has a relatively low overall resistance. By using inexpensive and readily available substances as sintering aid and as pore formers, a low-cost cathode is provided.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 1, 2016
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Rick D. Kerr, Bryan Gillispie, Mohammad Parsian, Joseph M. Keller, David A. Thompson
  • Patent number: 9017897
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Joseph V. Bonadies, Matthew Osterhout, Rod R. Stilgenbauer
  • Patent number: 9005490
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Rick D. Kerr, Joseph M Keller, Joseph V. Bonadies
  • Publication number: 20140170529
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Kailash C. JAIN, Joseph V. BONADIES, Matthew OSTERHOUT, Rod R. STILGENBAUER
  • Publication number: 20140166941
    Abstract: A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO3 inclusions. The solid state sintered material can also include calcium oxide, which can form from thermal composition of calcium carbonate. The solid state sintered material can also include a pore-forming particulate material such as carbon black and/or a doped ceramic metal oxide ionic conductor such as Sm-doped ceria uniformly dispersed in the solid state sintered material. The solid state sintered material can be formed from a two-step process in which a portion of the CaCO3 is mixed with the mixed oxide materials and heated to form porous agglomerates, and the remaining CaCO3 is added during the formation of a sintering paste. The solid state sintered material described herein can be used as a cathode material for solid oxide fuel cell.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: KAILASH C. JAIN, RICK D. KERR, JOSEPH M KELLER, JOSEPH V. BONADIES
  • Patent number: 8124037
    Abstract: An improved LSCF 6428 perovskite material of the type La12zSrx+zCo0.2+aFe0.8+bO3?? wherein x=0.4, z=(0-0.1), a=(0.01-0.04), and b=(0.05-0.15) for use as an SOFC cathode having increased electronic and ionic conductivity. The general formula is similar to the prior art formulae (La0.6Sr0.4)1?zCo0.2Fe0.8O3?? and La0.6Sr0.4Co0.2Fe0.8O3?? but applies the z term to La and Sr independently as well as reducing the overall content of La. Further, by adding a small amount (a) of extra Co ions, catalytic activity, conductivity, and sinterability are further enhanced. Adding small amounts (b) of Fe and/or Fe and Co moderates the thermal expansion coefficient with no adverse effect on crystal structure or fuel cell performance. Improved sinterability, microstructure, and reduced film cracking result in high power density of fuel cells. An inherently low-cost solid state reaction method is described.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: February 28, 2012
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Joseph M. Keller, Rick D. Kerr
  • Publication number: 20110143265
    Abstract: An SOFC structure having segmentation of the mixed layer on a cathode electrode to allow a higher fraction of ionic phase in a mixed layer, resulting in improved microstructure that provides higher specific surface area for electrochemical reaction. This is accomplished by using an MIEC layer over the segmented layer that supplies electrons laterally and vertically through the thickness of the mixed layer. Adequate connectivity between the cathode current collector and electrolyte for electrons is established, assuring efficient charge transfer and improved activity of the electrocatalyst in the porous cathode. Cell resistance is reduced and power output is improved.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Inventors: Kailash C. Jain, Rick D. Kerr, Bryan Allen Gillispie
  • Publication number: 20110143255
    Abstract: An improved LSCF 6428 perovskite material of the type La12zSrx+zCo0.2+aFe0.8+bO3?? wherein x=0.4, z=(0.01?0.1), a=(0.01?0.04), and b=(0.05?0.15) for use as an SOFC cathode having increased electronic and ionic conductivity. The general formula is similar to the prior art formulae (La0.6Sr0.4)1?z Co0.2 Fe0.8O3?? and La0.6Sr0.4 Co0.2 Fe0.8O3?? but applies the z term to La and Sr independently as well as reducing the overall content of La. Further, by adding a small amount (a) of extra Co ions, catalytic activity, conductivity, and sinterability are further enhanced. Adding small amounts (b) of Fe and/or Fe and Co moderates the thermal expansion coefficient with no adverse effect on crystal structure or fuel cell performance. Improved sinterability, microstructure, and reduced film cracking result in high power density of fuel cells. An inherently low-cost solid state reaction method is described.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Inventors: Kailash C. Jain, Joseph M. Keller, Rick D. Kerr
  • Publication number: 20100075194
    Abstract: A cathode of a solid-oxide fuel cell includes a first ionic conducting layer, a second layer deposited over the first layer and formed from a mixed ionic and electronic conductor layer including an oxygen ion conducting phase, and a third layer deposited over the second layer and formed from a mixed ionic and electronic conductor layer. A sintering aid and pore formers are added to the second layer and the third layer to establish ionic, electronic, and gas diffusion paths that are contiguous. By adjusting the microstructure of the second and the third layer, a high performance low resistance cathode is formed that bonds well to the electrolyte, is highly electro-catalytic, and has a relatively low overall resistance. By using inexpensive and readily available substances as sintering aid and as pore formers, a low-cost cathode is provided.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventors: Kailash C. Jain, Rick D. Kerr, Bryan Gillispie, Mohammad Parsian, Joseph M. Keller, David A. Thompson
  • Publication number: 20090047569
    Abstract: An anode for use in an anode-supported planar solid oxide fuel cell (SOFC) is formed from a Ni—YSZ cermet composition that includes a sintering aid selected from the group consisting of an oxide, a carbonate, and mixtures thereof of at least one metal of Group 2 of the Periodic Table.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: Kailash C. Jain, Mohammed Parsian, Bryan Gillispie, Joseph M. Keller, Rick D. Kerr
  • Patent number: 6916384
    Abstract: A method of treating a gas sensor comprising: disposing the gas sensor in a basic agent solution comprising a basic agent selected from the group consisting of Group IA of the Periodic Table of Elements, Group IIA of the Periodic Table of Elements, and combinations comprising at least one of the foregoing metals, wherein the gas sensor comprises an electrolyte disposed between and in ionic communication with a first electrode and a second electrode; disposing the gas sensor in an acidic agent solution; wetting at least a portion of a porous protective layer of the gas sensor with an alkaline-carbonate solution; and heating the gas sensor.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: July 12, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Kenneth M. Rahmoeller, Da Yu Wang, Paul Kikuchi, Carlos A. Valdes
  • Patent number: 6682640
    Abstract: Disclosed herein is a method for producing a gas sensor, comprising disposing a reference electrode on a side of an electrolyte, disposing a measuring electrode on a side of the electrolyte opposite the reference electrode, disposing a first protective coating on a side of the measuring electrode opposite the electrolyte, treating the sensor with an aqueous salt solution comprising chloride and carbonate salts comprising elements selected from the group consisting of Group IA and IIA elements of the Periodic Table to form a treated sensor comprising the chloride and the carbonate salt mixture, drying the treated sensor, and disposing a second protective coating on a side of the first protective coating opposite the measuring electrode.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: January 27, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Eric Clyde, Da Yu Wang, Paul Kikuchi
  • Publication number: 20030230484
    Abstract: Disclosed herein is a method for producing a gas sensor, comprising disposing a reference electrode on a side of an electrolyte, disposing a measuring electrode on a side of the electrolyte opposite the reference electrode, disposing a first protective coating on a side of the measuring electrode opposite the electrolyte, treating the sensor with an aqueous salt solution comprising chloride and carbonate salts comprising elements selected from the group consisting of Group IA and IIA elements of the Periodic Table to form a treated sensor comprising the chloride and the carbonate salt mixture, drying the treated sensor, and disposing a second protective coating on a side of the first protective coating opposite the measuring electrode.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 18, 2003
    Inventors: Kailash C. Jain, Eric Clyde, Da Yu Wang, Paul Kikuchi
  • Patent number: 6638405
    Abstract: One embodiment of a method for producing a gas sensor, comprises: disposing said gas sensor in a basic agent solution comprising a basic agent comprises a hydroxide of a metal selected from the group consisting of Group IA of the Periodic Table of Elements; Group IIA of the Periodic Table of Elements, and combinations comprising at least one of the foregoing basic agents, wherein said gas sensor comprises an electrolyte disposed between and in ionic communication with a first electrode and a second electrode; and disposing said gas sensor in an acidic agent solution.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: October 28, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Da Yu Wang, Eric J. Detwiler, Paul Kikuchi
  • Publication number: 20030075440
    Abstract: A method of treating a gas sensor comprising: disposing the gas sensor in a basic agent solution comprising a basic agent selected from the group consisting of Group IA of the Periodic Table of Elements, Group IIA of the Periodic Table of Elements, and combinations comprising at least one of the foregoing metals, wherein the gas sensor comprises an electrolyte disposed between and in ionic communication with a first electrode and a second electrode; disposing the gas sensor in an acidic agent solution; wetting at least a portion of a porous protective layer of the gas sensor with an alkaline-carbonate solution; and heating the gas sensor.
    Type: Application
    Filed: October 22, 2001
    Publication date: April 24, 2003
    Inventors: Kailash C. Jain, Kenneth M. Rahmoeller, Da Yu Wang, Paul Kikuchi, Carlos A. Valdes
  • Publication number: 20030070921
    Abstract: Disclosed herein are electrodes, sensors, and methods for making and using the same. In one embodiment, the sensor comprises: a co-fired sensing electrode comprising the reaction product of about 50 wt % to about 95 wt % noble metal, about 0.5 wt % to about 15.0 wt % yttria-stabilized zirconia, and about 1 wt % to about 6 wt % yttria, based upon a total combined weight of the noble metal, yttria-stabilized zirconia, and yttria, a reference electrode, and a co-fired electrolyte disposed between and in ionic communication with the co-fired sensing electrode and the reference electrode.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 17, 2003
    Inventors: Eric P. Clyde, Kailash C. Jain, Paul C. Kikuchi
  • Publication number: 20030047452
    Abstract: One embodiment of a method for producing a gas sensor, comprises: disposing said gas sensor in a basic agent solution comprising a basic agent comprises a hydroxide of a metal selected from the group consisting of Group IA of the Periodic Table of Elements; Group IIA of the Periodic Table of Elements, and combinations comprising at least one of the foregoing basic agents, wherein said gas sensor comprises an electrolyte disposed between and in ionic communication with a first electrode and a second electrode; and disposing said gas sensor in an acidic agent solution.
    Type: Application
    Filed: September 10, 2001
    Publication date: March 13, 2003
    Inventors: Kailash C. Jain, Da Yu Wang, Eric J. Detwiler, Paul Kikuchi
  • Patent number: 4948757
    Abstract: A method for preferentially etching phosphosilicate glass to form a micromechanical structure includes forming a layer of phosphosilicate glass on a substrate and opening at least one via in the phosphosilicate glass layer. A layer of material which is patterned to produce a micromechanical structure is formed over the phosphosilicate glass layer which extends through the via and adheres to the substrate. The phosphosilicate glass layer is then removed by immersing the device in an etchant bath containing an aqueous ammoniacal hydrogen peroxide solution. The resulting micromechanical structure has at least one point of attachment to the substrate and is otherwise spaced apart from the substrate by an air gap. A method for attaching an overhanging mass to a miniature cantilever beam using microelectronics fabrication technology is also provided in which the center of gravity is shifted to the endpoint of the free end of the beam.
    Type: Grant
    Filed: February 9, 1989
    Date of Patent: August 14, 1990
    Assignee: General Motors Corporation
    Inventors: Kailash C. Jain, Jacob A. Abraham
  • Patent number: 4918032
    Abstract: A method for preferentially etching phosphosilicate glass to form a micromechanical structure includes forming a layer of phosphosilicate glass on a substrate and opening at least one via in the phosphosilicate glass layer. A layer of material which is patterned to produce a micromechanical structure is formed over the phosphosilicate glass layer which extends through the via and adheres to the substrate. The phosphosilicate glass layer is then removed by immersing the device in an etchant bath containing an aqueous ammoniacal hydrogen peroxide solution. The resulting micromechanical structure has at least one point of attachment to the substrate and is otherwise spaced apart from the substrate by an air gap. A method for attaching an overhanging mass to a miniature cantilever beam using microelectronics fabrication technology is also provided in which the center of gravity is shifted to the endpoint of the free end of the beam.
    Type: Grant
    Filed: July 8, 1988
    Date of Patent: April 17, 1990
    Assignee: General Motors Corporation
    Inventors: Kailash C. Jain, Jacob A. Abraham
  • Patent number: 4811063
    Abstract: JMOS depletion mode transistors include back-to-back junctions in the doped polysilicon layer that serves as the gate. The polysilicon layer includes a first region of the same conductivity type as the channel in contact with the channel, and a second region, of the same conductivity type as the channel and to which the gate potential is applied, spaced apart by a region of the opposite conductivity type that serves as a sink for minority carriers in the channel. Both buried oxide layer and recessed gate JMOS transistors are included.
    Type: Grant
    Filed: October 20, 1987
    Date of Patent: March 7, 1989
    Assignee: General Motors Corporation
    Inventors: Stephen J. Valeri, Kailash C. Jain, Bernard A. MacIver