Patents by Inventor Kaiwei Yao

Kaiwei Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190326891
    Abstract: A switch mode power supply includes an error amplifier, an oscillator, a pulse width modulation logic circuit, and an output stage. The oscillator includes a current generator that receives a clock signal and provides a current proportional to a frequency of the clock signal, a current mirror having an input coupled to the output of the current generator, and a first capacitor having a first terminal coupled to an output of the current mirror and providing a ramp signal, and a second terminal coupled to power supply voltage terminal. The pulse width modulation logic circuit compares the output of the error amplifier with the ramp signal, and generates a high- and low-side drive signals respectively to first and second outputs in response to the comparing. The output stage is responsive to the high- and low-side drive signals for alternatively coupling a switch terminal between an input voltage terminal and ground.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Applicant: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Hua ZHU, Kaiwei YAO
  • Publication number: 20190326757
    Abstract: A method of controlling a photovoltaic power system, can include: controlling a first current flowing through a connection line between an output terminal of a power conversion circuit and an input terminal of an inversion circuit according to a rapid shutdown signal; and controlling operation states of the power conversion circuit coupled to a photovoltaic panel in accordance with the first current, such that a voltage on the connection line meets preset requirements. A photovoltaic power system can include: an inversion circuit configured to be controlled to regulate a first current of an input line of the inversion circuit; and at least one power conversion circuit coupled in series with the input line, and being configured to transition among different operation states according to the first current.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 24, 2019
    Inventor: Kaiwei Yao
  • Patent number: 10389337
    Abstract: A ramp generator includes a current generator, a current mirror, and a first capacitor. The current generator has an input for receiving a clock signal, and an output for providing a current proportional to a frequency of the clock signal using a first transistor having first and second current electrodes and a control electrode, an amplifier that establishes a reference voltage on the second current electrode of the first transistor, and a variable resistor coupled between the second current electrode of the second transistor and ground whose resistance is set according to the frequency of the clock signal. The current mirror has an input coupled to the first terminal of the first transistor, and a second terminal. The first capacitor has a first terminal coupled to the output of the current mirror and providing a ramp signal, and a second terminal coupled to the first power supply voltage terminal.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: August 20, 2019
    Assignee: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Hua Zhu, Kaiwei Yao
  • Patent number: 10116202
    Abstract: A DC/DC power supply system includes a primary side and a secondary side to generate an output DC voltage from an input DC voltage. The power supply also includes adaptive clamping circuitry that generates an adjustable clamping voltage and/or current to limit a Vds breakdown voltage for switches of the secondary side.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 30, 2018
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Xiaopeng Wang, Kaiwei Yao
  • Patent number: 9966899
    Abstract: A method for testing a photovoltaic device electrically coupled to an input port of a maximum power point tracking (MPPT) controller, where the MPPT controller includes a switching circuit adapted to transfer power between the input port and an output port of the MPPT controller, includes the steps of: (a) driving a test current into the output port of the MPPT controller; (b) detecting presence of the test current; and (c) in response to detecting presence of the test current, causing the switching circuit to provide a path for the test current from the output port to the photovoltaic device.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: May 8, 2018
    Assignee: Volterra Semiconductor, LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Patent number: 9837556
    Abstract: An integrated photovoltaic panel has one or more integral DC-DC converter circuits. The DC-DC converter input port couples to a section of at least one photovoltaic (PV) device of the panel separate from PV devices feeding other converters. The converter has an MPPT controller for operating the converter to transfer maximum power from coupled photovoltaic devices to its output port. The PV panel has a transparent substrate to which PV devices are mounted. A laminating material seals PV devices and converters to the substrate. In embodiments, the panel has multiple converters connected with output ports in series. The integrated PV panel provides summed maximum powers of each section of PV devices. In some embodiments the DC-DC converters are complete with inductors, in other embodiments a common inductor is shared by multiple converters of the panel, in a particular embodiment the common inductor is parasitic inductance of the panel.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 5, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Ilija Jergovic, Kaiwei Yao, Anthony J. Stratakos
  • Publication number: 20170346385
    Abstract: A switch mode power supply controller includes a switch terminal adapted to be coupled to an inductor that drives a load, high- and low-side switches a pulse width modulation (PWM) circuit, and a current monitor circuit. The PWM circuit is coupled to a feedback terminal for receiving a feedback signal, and alternatively drives the high-side switch and the low-side switch with a duty cycle set using the feedback signal to regulate an output voltage to a desired level in a work mode, and keeps both the high-side switch and the low-side switch non-conductive in a non-work mode. The current monitor circuit provides a current monitor signal representative of a current driven from the inductor to the load, wherein the current monitor circuit forms the current monitor signal by measuring an inductor current during a work mode, and by emulating the inductor current during a non-work mode.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 30, 2017
    Applicant: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Enzhu LIANG, Kaiwei YAO, Ming GU
  • Publication number: 20170338807
    Abstract: A ramp generator includes a current generator, a current mirror, and a first capacitor. The current generator has an input for receiving a clock signal, and an output for providing a current proportional to a frequency of the clock signal using a first transistor having first and second current electrodes and a control electrode, an amplifier that establishes a reference voltage on the second current electrode of the first transistor, and a variable resistor coupled between the second current electrode of the second transistor and ground whose resistance is set according to the frequency of the clock signal. The current mirror has an input coupled to the first terminal of the first transistor, and a second terminal. The first capacitor has a first terminal coupled to the output of the current mirror and providing a ramp signal, and a second terminal coupled to the first power supply voltage terminal.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 23, 2017
    Applicant: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Hua ZHU, Kaiwei YAO
  • Patent number: 9806523
    Abstract: A switching circuit for extracting power from an electric power source includes (1) an input port for electrically coupling to the electric power source, (2) an output port for electrically coupling to a load, (3) a first switching device configured to switch between its conductive state and its non-conductive state to transfer power from the input port to the output port, (4) an intermediate switching node that transitions between at least two different voltage levels at least in part due to the first switching device switching between its conductive state and its non-conductive state, and (5) a controller for controlling the first switching device to maximize an average value of a voltage at the intermediate switching node.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: October 31, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 9698599
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: July 4, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20170141725
    Abstract: A method for testing a photovoltaic device electrically coupled to an input port of a maximum power point tracking (MPPT) controller, where the MPPT controller includes a switching circuit adapted to transfer power between the input port and an output port of the MPPT controller, includes the steps of: (a) driving a test current into the output port of the MPPT controller; (b) detecting presence of the test current; and (c) in response to detecting presence of the test current, causing the switching circuit to provide a path for the test current from the output port to the photovoltaic device.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Patent number: 9577426
    Abstract: An integrated circuit chip includes a first input port, a first output port, and first and second transistors electrically coupled in series across the first input port. The second transistor is also electrically coupled across the first output port and is adapted to provide a path for current flowing through the first output port when the first transistor is in its non-conductive state. The integrated circuit chip additionally includes first driver circuitry for driving gates of the first and second transistors to cause the transistors to switch between their conductive and non-conductive states. The integrated circuit chip further includes first controller circuitry for controlling the first driver circuitry such that the first and second transistors switch between their conductive and non-conductive states to at least substantially maximize an amount of electric power extracted from an electric power source electrically coupled to the first input port.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 21, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 9557758
    Abstract: A method for operating a maximum power point tracking (MPPT) controller including a switching circuit adapted to transfer power between an input port and an output port includes the steps of: (a) in a first operating mode of the MPPT controller, causing a first switching device of the switching circuit to operate at a fixed duty cycle; and (b) in a second operating mode of the MPPT controller, causing a control switching device of the switching circuit to repeatedly switch between its conductive and non-conductive states to maximize an amount of power extracted from a photovoltaic device electrically coupled to the input port.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 31, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Publication number: 20170012545
    Abstract: The present disclosure provides A DC/DC power supply system that includes a primary side and a secondary side to generate an output DC voltage from an input DC voltage. The power supply also includes adaptive clamping circuitry configured to generate an adjustable clamping voltage and/or current to limit a Vds breakdown voltage for a plurality of switches of the secondary side.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 12, 2017
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Xiaopeng WANG, Kaiwei YAO
  • Publication number: 20160226247
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 9312769
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: April 12, 2016
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20150372596
    Abstract: A maximum power point tracking controller includes an input port for electrically coupling to an electric power source, an output port for electrically coupling to a load, a control switching device, and a control subsystem. The control switching device is adapted to repeatedly switch between its conductive and non-conductive states to transfer power from the input port to the output port. The control subsystem is adapted to control switching of the control switching device to regulate a voltage across the input port, based at least in part on a signal representing current flowing out of the output port, to maximize a signal representing power out of the output port.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Michael D. McJimsey, Anthony J. Stratakos, Ilija Jergovic, Xin Zhang, Kaiwei Yao, Vincent W. Ng, Phong T. Nguyen, Artin Der Minassians, Ryan James Ricchiuti
  • Patent number: 9179519
    Abstract: A phase-shift dimming circuit for LED controller having a delay signal generator configured to receive a PWM input signal, and to provide a plurality of pairs of set signal and reset signal, the set signal and the reset signal respectively having pulses; and a plurality of latches configured to respectively receive the plurality of pairs of set signal and reset signal to generate a plurality of PMW output signals, each of the PWM output signals having pulses, and wherein the rising edge of the pulses of the PWM output signals is based on the corresponding set signal pulses, and the falling edge of the pulses of the PWM output signals is based on the corresponding reset signal pulses.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 3, 2015
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Da Chen, Zhengwei Zhang, Kaiwei Yao
  • Patent number: 9141123
    Abstract: A maximum power point tracking controller includes an input port for electrically coupling to an electric power source, an output port for electrically coupling to a load, a control switching device, and a control subsystem. The control switching device is adapted to repeatedly switch between its conductive and non-conductive states to transfer power from the input port to the output port. The control subsystem is adapted to control switching of the control switching device to regulate a voltage across the input port, based at least in part on a signal representing current flowing out of the output port, to maximize a signal representing power out of the output port.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 22, 2015
    Assignee: Volterra Semiconductor LLC
    Inventors: Michael D. McJimsey, Anthony J. Stratakos, Ilija Jergovic, Xin Zhang, Kaiwei Yao, Vincent W. Ng, Phong T. Nguyen, Artin Der Minassians
  • Publication number: 20150256077
    Abstract: A switching circuit for extracting power from an electric power source includes (1) an input port for electrically coupling to the electric power source, (2) an output port for electrically coupling to a load, (3) a first switching device configured to switch between its conductive state and its non-conductive state to transfer power from the input port to the output port, (4) an intermediate switching node that transitions between at least two different voltage levels at least in part due to the first switching device switching between its conductive state and its non-conductive state, and (5) a controller for controlling the first switching device to maximize an average value of a voltage at the intermediate switching node.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic