Patents by Inventor Kaiwei Yao

Kaiwei Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9035566
    Abstract: Light emitting diode (LED) dimming and driver systems and associated methods of control are disclosed herein. In one embodiment, a system comprises a PFC stage and an LED driver stage. The LED driver stage comprises an isolated converter and a controller responsive to a dimming signal to dim LED strings for backlight. The controller also regulates an output current of the isolated converter.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 19, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Lei Du, Bairen Liu, Kaiwei Yao, Junming Zhang, Yuancheng Ren
  • Patent number: 9035626
    Abstract: A switching circuit for extracting power from an electric power source includes (1) an input port for electrically coupling to the electric power source, (2) an output port for electrically coupling to a load, (3) a first switching device configured to switch between its conductive state and its non-conductive state to transfer power from the input port to the output port, (4) an intermediate switching node that transitions between at least two different voltage levels at least in part due to the first switching device switching between its conductive state and its non-conductive state, and (5) a controller for controlling the first switching device to maximize an average value of a voltage at the intermediate switching node.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 19, 2015
    Assignee: Volterra Semiconductor Corporation
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20150108960
    Abstract: An integrated circuit chip includes a first input port, a first output port, and first and second transistors electrically coupled in series across the first input port. The second transistor is also electrically coupled across the first output port and is adapted to provide a path for current flowing through the first output port when the first transistor is in its non-conductive state. The integrated circuit chip additionally includes first driver circuitry for driving gates of the first and second transistors to cause the transistors to switch between their conductive and non-conductive states. The integrated circuit chip further includes first controller circuitry for controlling the first driver circuitry such that the first and second transistors switch between their conductive and non-conductive states to at least substantially maximize an amount of electric power extracted from an electric power source electrically coupled to the first input port.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 8952632
    Abstract: LED driver systems and associated methods of control are disclosed herein. In one embodiment, the LED driver system comprises a converter and a controller. The controller is responsive to the LED current feedback signal and a dimming signal, and operable to generate a continuous gate drive signal to control the primary side switch of the converter. Thus, the controller regulates the output current of the converter.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 10, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Lei Du, Bairen Liu, Kaiwei Yao, Junming Zhang, Yuancheng Ren
  • Patent number: 8946937
    Abstract: An integrated circuit chip includes a first input port, a first output port, and first and second transistors electrically coupled in series across the first input port. The second transistor is also electrically coupled across the first output port and is adapted to provide a path for current flowing through the first output port when the first transistor is in its non-conductive state. The integrated circuit chip additionally includes first driver circuitry for driving gates of the first and second transistors to cause the transistors to switch between their conductive and non-conductive states. The integrated circuit chip further includes first controller circuitry for controlling the first driver circuitry such that the first and second transistors switch between their conductive and non-conductive states to at least substantially maximize an amount of electric power extracted from an electric power source electrically coupled to the first input port.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: February 3, 2015
    Assignee: Volterra Semiconductor Corporation
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20140373894
    Abstract: A photovoltaic panel includes a panel arc detection subsystem and a plurality of photovoltaic assemblies electrically coupled in series between positive and negative panel power rails. The panel arc detection subsystem is adapted to detect a series electrical arc within the photovoltaic panel from a discrepancy between a panel voltage across the positive and negative panel power rails and a sum of all voltages across the plurality of photovoltaic assemblies. A photovoltaic string includes a string arc detection subsystem and a plurality of photovoltaic panels electrically coupled in series between positive and negative string power rails. The string arc detection subsystem is adapted to detect a series electrical arc within the photovoltaic string from a discrepancy between a string voltage across the positive and negative string power rails and a sum of all voltages across the plurality of photovoltaic panels.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Anthony J. Stratakos, Kaiwei Yao
  • Publication number: 20140375134
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 8872384
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N in an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: October 28, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20140103892
    Abstract: A scalable maximum power point tracking (MPPT) controller includes an input and an output port, a switching circuit adapted to transfer power from the input port to the output port, and a controller core. The controller core is adapted to (a) control the switching circuit to maximize an amount of power extracted from a photovoltaic device electrically coupled to the input port, and (b) set one or more parameters of the MPPT controller based at least in part on a configuration code representing a number of photovoltaic cells of the photovoltaic device electrically coupled in series.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Michael D. McJimsey, Vincent W. Ng, Anthony J. Stratakos, Ilija Jergovic, Xin Zhang, Kaiwei Yao
  • Publication number: 20140103891
    Abstract: A method for operating a maximum power point tracking (MPPT) controller including a switching circuit adapted to transfer power between an input port and an output port includes the steps of: (a) in a first operating mode of the MPPT controller, causing a first switching device of the switching circuit to operate at a fixed duty cycle; and (b) in a second operating mode of the MPPT controller, causing a control switching device of the switching circuit to repeatedly switch between its conductive and non-conductive states to maximize an amount of power extracted from a photovoltaic device electrically coupled to the input port.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Publication number: 20140103894
    Abstract: A maximum power point tracking controller includes an input port for electrically coupling to an electric power source, an output port for electrically coupling to a load, a control switching device, and a control subsystem. The control switching device is adapted to repeatedly switch between its conductive and non-conductive states to transfer power from the input port to the output port. The control subsystem is adapted to control switching of the control switching device to regulate a voltage across the input port, based at least in part on a signal representing current flowing out of the output port, to maximize a signal representing power out of the output port.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Michael D. McJimsey, Anthony J. Stratakos, Ilija Jergovic, Xin Zhang, Kaiwei Yao, Vincent W. Ng, Phong T. Nguyen, Artin Der Minassians
  • Patent number: 8503139
    Abstract: The present invention discloses a step up circuit with output floating for driving a load such as a LED or a series of LEDs in a string. The step up circuit comprises an input port, an output port, an inductor, an input capacitor, an output capacitor, a first switch, a second switch and a third switch. The third switch S3 is an additional switch for purpose of high dimming ratio control, short circuit protection and input disconnection realization. Further, the third switch can implement an additional LDO function when the voltage at the input port is larger than the voltage across the load.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 6, 2013
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Kaiwei Yao, Zheng Luo
  • Publication number: 20130169173
    Abstract: A phase-shift dimming circuit for LED controller having a delay signal generator configured to receive a PWM input signal, and to provide a plurality of pairs of set signal and reset signal, the set signal and the reset signal respectively having pulses; and a plurality of latches configured to respectively receive the plurality of pairs of set signal and reset signal to generate a plurality of PMW output signals, each of the PWM output signals having pulses, and wherein the rising edge of the pulses of the PWM output signals is based on the corresponding set signal pulses, and the falling edge of the pulses of the PWM output signals is based on the corresponding reset signal pulses.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 4, 2013
    Applicant: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Da Chen, Zhengwei Zhang, Kaiwei Yao
  • Patent number: 8410716
    Abstract: Apparatus, systems, and methods related to controlling multiple strings of light emitting diodes (LEDs) are disclosed. An apparatus may include internal current limiter circuits that are each coupled in series with an associated string of LEDs and are configured to at least partially regulate the current through the associated string of LEDs. The apparatus may also be configured to control external current limiter circuits that are each coupled in series with a corresponding internal current limiter circuit and the string of LEDs associated with the corresponding internal current limiter circuit.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 2, 2013
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Kaiwei Yao, James C. Moyer
  • Patent number: 8354799
    Abstract: The present technology is generally related to LED bypass circuits and associated methods of operation. In one embodiment, an LED bypass circuit includes a monitoring circuit and a bypass switch. The monitoring circuit is coupled to the LED to monitor the differential voltage across the LED. The bypass switch is coupled to the LED in parallel. When an open status is detected by the monitoring circuit, the bypass switch is turned on to bypass the LED.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 15, 2013
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Eric Yang, Kaiwei Yao
  • Patent number: 8310165
    Abstract: A high-voltage LED drive scheme with multi-stage power regulation. The multi-stage power regulation applies two components of voltage to drive the LED strings. This scheme achieves high efficiency, small size and low cost.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: November 13, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Kaiwei Yao
  • Publication number: 20120235596
    Abstract: The present technology provides LED drivers with audible noise elimination and methods thereof. A burst dimming signal is used in the LED driver. A switch is serially coupled to the output capacitor of the LED driver and controlled by the burst dimming signal for eliminating any audible noise.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 20, 2012
    Inventors: Kaiwei Yao, Zheng Lou
  • Patent number: 8269423
    Abstract: Various embodiments of LED drivers and associated methods of are described below. In one embodiment, a method for controlling an LED driver includes receiving a reference voltage, receiving a feedback voltage from said LED driver, receiving said input voltage as a first feed forward voltage and said output voltage as a second feed forward voltage, generating a hysteretic width based on said first feed forward voltage and said second feed forward voltage, and generating a hysteretic band voltage using said hysteretic width and said reference voltage. The method also includes generating a first control signal for controlling said LED driver based on said hysteretic band voltage and said feedback voltage, inverting said first control signal to generate a second control signal for controlling said LED driver, and achieving a generally fixed frequency for said LED driver.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: September 18, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Kaiwei Yao, Naixing Kuang, Edward Deng
  • Publication number: 20120062144
    Abstract: Various embodiments of LED drivers and associated methods of are described below. In one embodiment, a method for controlling an LED driver includes receiving a reference voltage, receiving a feedback voltage from said LED driver, receiving said input voltage as a first feed forward voltage and said output voltage as a second feed forward voltage, generating a hysteretic width based on said first feed forward voltage and said second feed forward voltage, and generating a hysteretic band voltage using said hysteretic width and said reference voltage. The method also includes generating a first control signal for controlling said LED driver based on said hysteretic band voltage and said feedback voltage, inverting said first control signal to generate a second control signal for controlling said LED driver, and achieving a generally fixed frequency for said LED driver.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: KAIWEI YAO, NAIXING KUANG, EDWARD DENG
  • Publication number: 20120056543
    Abstract: The present technology is generally related to LED bypass circuits and associated methods of operation. In one embodiment, an LED bypass circuit includes a monitoring circuit and a bypass switch. The monitoring circuit is coupled to the LED to monitor the differential voltage across the LED. The bypass switch is coupled to the LED in parallel. When an open status is detected by the monitoring circuit, the bypass switch is turned on to bypass the LED.
    Type: Application
    Filed: March 18, 2011
    Publication date: March 8, 2012
    Inventors: Eric Yang, Kaiwei Yao