Patents by Inventor Kalin V. Lazarov

Kalin V. Lazarov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8411442
    Abstract: With infrared (IR) sensors, repeatability and accuracy can become an issue when there are thermal gradients between the sensor and an underlying printed circuit board (PCB). Conventionally, a large thermal mass is included in the sensor packaging to reduce the effect from such thermal gradients, but this increase costs and size of the sensor. Here, however, a PCB is provided that includes an isothermal cage included therein that generally ensures that the temperature of the underlying PCB and sensor are about the same by including structural features (namely, the isothermal cage) that generally ensure that the thermal time constant for a path from a heat source to the thermopile (which is within the sensor) is approximately the same as thermal time constants for paths through the PCB.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Walter Meinel, Kalin V. Lazarov
  • Patent number: 8304850
    Abstract: An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kalin V. Lazarov, Walter B. Meinel
  • Publication number: 20120266672
    Abstract: An inertial sensor (16) includes a differential thermocouple (13) including first (4A) and second (4B) metal traces, a poly trace (6) with a first end connected to a first end of the first metal trace to form a first (?) thermocouple junction and a second end connected to a first end of the second metal trace to form a second (+) thermocouple junction. A gas mass (10) located symmetrically with respect to the thermocouple junctions is heated by a heater (8). Acceleration or tilting of the sensor shifts the relative location of the gas mass relative to the thermocouple junctions, causing differential heating thereof and generation of a corresponding thermocouple output signal.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 25, 2012
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Publication number: 20120218022
    Abstract: In one embodiment, a current sensing circuit corrects for the transient and steady state temperature measurement errors due to physical separation between a resistive sense element and a temperature sensor. The sense element has a temperature coefficient of resistance. The voltage across the sense element and a temperature signal from the temperature sensor are received by processing circuitry. The processing circuitry determines a power dissipated by the sense element, which may be instantaneous or average power, and determines an increased temperature of the sense element. The resistance of the sense element is changed by the increased temperature, and this derived resistance Rs is used to calculate the current through the sense element using the equation I=V/R or other related equation. The process is iterative to continuously improve accuracy and update the current.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: LINEAR TECHNOLOGY CORPORATION
    Inventors: Kalin V. Lazarov, Matthew J. Maloney, Christopher Pollard, Edson W. Porter
  • Publication number: 20120200486
    Abstract: A system for generating tracking coordinate information in response to movement of an information-indicating element includes an array (55) of IR sensors (60-x,y) disposed along a surface (55A) of the array. Each IR sensor includes first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3) of a radiation sensor chip (1). The first thermopile junction is more thermally insulated from a substrate (2) of the radiation sensor chip than the second thermopile junction. A sensor output signal between the first and second thermopile junctions is coupled to a bus (63). A processing device (64) is coupled to the bus for operating on information representing temperature differences between the first and second thermopile junctions of the various IR sensors, respectively, caused by the presence of the information-indicating element to produce the tracking coordinate information as the information-indicating element moves along the surface.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Timothy V. Kalthoff
  • Publication number: 20120139077
    Abstract: Here, an apparatus is provided. The apparatus generally comprises a substrate and a thermopile. The thermopile includes a cavity that is etched into the substrate, a functional area that is formed over the substrate (where the cavity is generally coextensive with the functional area), and a metal ring formed over the substrate along the periphery of the functional area (where the metal ring is thermally coupled to the substrate).
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter Meinel, Kalin V. Lazarov
  • Publication number: 20120138800
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 7, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Publication number: 20120086098
    Abstract: There has been very little (if any) attention to address contamination diffusion within an integrated circuit (IC) because there are very few applications where a protective overcoat will be penetrated as part of the manufacturing process. Here, a sealing ring is provided that address this problem. Preferably, the sealing ring uses the combination of electrically conductive barrier rings and the tortuous migration path to allow an electronic device (i.e., thermopile), where a protective overcoat is penetrated during manufacture, to communicate with external devices while being isolated to prevent contamination.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter Meinel, Kalin V. Lazarov
  • Publication number: 20120063093
    Abstract: With infrared (IR) sensors, repeatability and accuracy can become an issue when there are thermal gradients between the sensor and an underlying printed circuit board (PCB). Conventionally, a large thermal mass is included in the sensor packaging to reduce the effect from such thermal gradients, but this increase costs and size of the sensor. Here, however, a PCB is provided that includes an isothermal cage included therein that generally ensures that the temperature of the underlying PCB and sensor are about the same by including structural features (namely, the isothermal cage) that generally ensure that the thermal time constant for a path from a heat source to the thermopile (which is within the sensor) is approximately the same as thermal time constants for paths through the PCB.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter Meinel, Kalin V. Lazarov
  • Publication number: 20120061570
    Abstract: In conventional membrane infrared (IR) sensors, little to no attention has been paid toward transmissivity of IR near metal traces. Here, because the substrate of an integrated circuit carrying the sensor is used as a visible light filter, reflection of IR radiation back into the substrate can affect the operation and reliability of the IR sensor. As a result, an arrangement is provided that reduces the area occupied by metal lines by reducing the pitch and compacting the routing so as to reduce the effects from the reflection of IR radiation by metal traces.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter Meinel, Kalin V. Lazarov
  • Patent number: 8129682
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8115272
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Patent number: 8114779
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110294246
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110291222
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Patent number: 8026177
    Abstract: A semiconductor device includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 27, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110147869
    Abstract: An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Kalin V. Lazarov, Walter B. Meinel
  • Publication number: 20100327393
    Abstract: A semiconductor device includes a semiconductor layer (2) and a dielectric stack (3) on the semiconductor layer. A plurality of etchant openings (24-1,2 . . . ) are formed through the dielectric stack (3) for passage of etchant for etching a plurality of overlapping sub-cavities (4-1,2 . . . ), respectively. The etchant is introduced through the etchant openings to etch a composite cavity (4) in the semiconductor layer by simultaneously etching the plurality of overlapping sub-cavities into the semiconductor layer.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 30, 2010
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20100289108
    Abstract: A semiconductor device includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20100213374
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Inventors: Walter B. Meinel, Kalin V. Lazarov