Patents by Inventor Kang-Huai Wang

Kang-Huai Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200036920
    Abstract: A method and apparatus for imaging a body lumen are disclosed. According to the method, an imaging apparatus is induced into the body lumen. Structured light from the imaging apparatus is projected into the body lumen. The structured light reflected from anatomical features in the body lumen is detected by the imaging apparatus. A first structured light image is generated from the detected structured light by the imaging apparatus. Non-structured light is emitted from the imaging apparatus into the body lumen. The non-structured light reflected from the anatomical features in the body lumen is detected by the imaging apparatus. A non-structured light image is generated from the detected non-structured light by the imaging apparatus. The frame period of the first structured light image is shorter than the frame period of the non-structured light image. In one embodiment, the imaging apparatus corresponds to a capsule endoscope.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 30, 2020
    Inventors: Kang-Huai Wang, Yi Xu, Gordon C. Wilson, Chenyu Wu
  • Patent number: 10531786
    Abstract: A capsule endoscopic device with movement control is disclosed. The capsule endoscopic device comprises a capsule housing, one or more electrodes disposed fixedly through the capsule housing, a signal generation/signal driver unit, an interface circuit and a switch module. The electrodes apply electrical stimulus to living body tissue in a patient's gastrointestinal track. The signal generation/signal driver unit generates the electrical stimulus for the electrodes. The switch module is coupled to the electrodes, the signal generation/signal driver unit and the interface circuit. Furthermore, the switch module is configured to connect the electrodes to the signal generation/signal driver unit or the interface circuit depending on an operation mode. The switch module, the signal generation/signal driver unit and the interface circuit are inside the capsule housing.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: January 14, 2020
    Assignee: CAPSO VISION INC
    Inventor: Kang-Huai Wang
  • Publication number: 20200013143
    Abstract: A method and apparatus of processing and displaying images captured using an in vivo capsule camera are disclosed. One or more overlapped areas between a target image and each image in a neighboring image group are determined, which comprises at least two neighboring images around the target image. Marked pixels in the target image are then determined, where a pixel in the target image is designated as a marked pixel if the pixel is within an overlapped area between the target image and at least one neighboring image. If the total number of the marked pixels in the target image exceeds a threshold and the number of the marked pixels associated with the overlapped area(s) between the target image and any image in the neighboring image group is below the threshold, the target image is excluded from a set of images to be displayed on a display device.
    Type: Application
    Filed: April 19, 2017
    Publication date: January 9, 2020
    Inventors: Gordon C. Wilson, Yi Xu, Kang-Huai Wang, Chenyu Yu
  • Patent number: 10531074
    Abstract: Disclosed herein are systems, methods, and structures providing accurate and easy to use size measurement of physiological features identified from endoscopic examination. In sharp contrast to the prior art, systems, methods, and structures according to the present disclosure employ structured light that advantageously enables size and/or distance information about lesions and/or other physiological features in a gastrointestinal (GI) tract. Advantageously, systems, methods, and structures according to the present disclosure are applicable to both capsule endoscopes and insertion endoscopes.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: January 7, 2020
    Assignee: CAPSOVISION, INC.
    Inventors: Gordon C. Wilson, Kang-Huai Wang, Ganyu Lu
  • Publication number: 20200007802
    Abstract: An integrated image sensor for capturing a mixed structured-light image and regular image using an integrated image sensor are disclosed. The integrated image sensor comprises a pixel array, one or more output circuits, one or more analog-to-digital converters, and one or more timing and control circuits. The timing and control circuits are arranged to perform a set of actions including capturing a regular image and a structured-light image. According to the present invention, the structured-light image captured before or after the regular image is used to derive depth or shape information for the regular image. An endoscope based on the above integrated image sensor is also disclosed. The endoscope may comprises a capsule housing adapted to be swallowed, where the components of integrated image sensor, a structured light source and anon-structured light source are enclosed and sealed in the capsule housing.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Inventors: Kang-Huai Wang, Yi Xu, Gordon C. Wilson, Chenyu Wu
  • Patent number: 10506921
    Abstract: A method and system for determining a travelled distance by a capsule camera are disclosed. A current global motion vector for a current image in the image sequence is determined, where the current global motion vector corresponds to movement made by the capsule camera between the current image and a reference image associated with the image sequence. A travelled distance by the capsule camera in the GI tract is determined according to the current global motion vector and prior global motion vectors derived for prior images between an initial image and the current image, where the travelled distance is measured from an initial location associated with the initial image to a current location associated with the current image. A method and system for displaying an image sequence captured by a capsule camera are also disclosed. The travelled distances associated with the image sequence are displayed on a display.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 17, 2019
    Assignee: CAPSO VISION INC
    Inventor: Kang-Huai Wang
  • Publication number: 20190374155
    Abstract: A method and apparatus for estimating or measuring a physical area or physical volume of an object of interest in one or more images captured using an endoscope are disclosed. According to the present method, one or more structured-light images and one or more regular images captured using an imaging apparatus are received. An object of interest in the regular images is determined. Distance information associated with the object of interest with respect to the imaging apparatus is derived from the structured-light images. The physical area size or physical volume size of the object of interest is determined based on the regular images and the distance information. The imaging apparatus can be a capsule endoscope or an insertion endoscope.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: Kang-Huai Wang, Mark Hadley, Chenyu Wu
  • Publication number: 20190365212
    Abstract: A method and apparatus for processing gastrointestinal (GI) images are disclosed. According to this method, a regular image is received, where the regular image is captured using an imaging apparatus by projecting non-structured light onto a body lumen when the imaging apparatus is in the body lumen. One or more structured-light images captured using the imaging apparatus by projecting the body lumen with structured light are received. A target distance for a target region in the regular image is derived based on said one or more structured-light images. A filter is determined based on the target distance and camera parameters associated with the imaging apparatus. A first processed target region is generated by applying the filter to the target region to improve sharpness of the target region. A first processed regular image comprising the first processed target region is provided.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Kang-Huai Wang, Gordon C. Wilson
  • Patent number: 10499029
    Abstract: A display device includes (a) a non-volatile memory containing corrective data for compensating input image data received; (b) display hardware receiving control and data signals for displaying an image; and (c) an image processing circuit that retrieves the corrective data from the non-volatile memory to generate the data signals for the display hardware, after applying the corrective data to each color component of each pixel in the input image data.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: December 3, 2019
    Assignee: CAPSO VISION INC
    Inventors: Kang-Huai Wang, Gordon Wilson
  • Patent number: 10484629
    Abstract: A method and device for improving the accuracy of depth information derived from a structured-light image for a regular image are disclosed. In one example, an additional structured-light image is captured before a first structured-light image or after a regular image. The depth information for the regular image can be derived from the first structured-light image and corrected by incorporating depth information from the additional structured-light image. A model for depth information can be used to predict or interpolate depth information for the regular image. In another example, two regular sub-images may be captured with a structured-light image in between. If substantial frame differences or substantial global motion vector/block motion vectors are detected, the two regular sub-images will not be combined in order to avoid possible motion smear. Instead, one of the two sub-images will be selected and scaled as the output regular image.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 19, 2019
    Assignee: CAPSO VISION INC
    Inventors: Kang-Huai Wang, Yi Xu, Gordon C. Wilson, Chenyu Wu
  • Patent number: 10447950
    Abstract: An integrated image sensor for capturing a mixed structured-light image and regular image using an integrated image sensor are disclosed. The integrated image sensor comprises a pixel array, one or more output circuits, one or more analog-to-digital converters, and one or more timing and control circuits. The timing and control circuits are arranged to perform a set of actions including capturing a regular image and a structured-light image. According to the present invention, the structured-light image captured before or after the regular image is used to derive depth or shape information for the regular image. An endoscope based on the above integrated image sensor is also disclosed. The endoscope may comprises a capsule housing adapted to be swallowed, where the components of integrated image sensor, a structured light source and a non-structured light source are enclosed and sealed in the capsule housing.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: October 15, 2019
    Assignee: Capso Vision Inc.
    Inventors: Kang-Huai Wang, Yi Xu, Gordon C. Wilson, Chenyu Wu
  • Publication number: 20190304121
    Abstract: A method and apparatus for estimating or measuring a physical area or physical volume of an object of interest in one or more images captured using an endoscope are disclosed. According to the present method, an object of interest in an image or images is determined. Also, the endoscope captures one or more structured-light images to derive distance information associated with the object of interest with respect to the camera of the endoscope. The physical area size or physical volume size of the object of interest is then determined based on the image or images, and the distance information.
    Type: Application
    Filed: May 20, 2019
    Publication date: October 3, 2019
    Inventors: Kang-Huai Wang, Mark Hadley, Chenyu Wu
  • Publication number: 20190295279
    Abstract: A method and apparatus of capturing non-structured light images and structured light images for deriving depth information are disclosed. According to the method, one or more non-SL (non-structured light) images without structured light and one or more initial SL (structured light) images formed on a common image plane are captured by projecting structured light patterns in a visible spectrum with the structured light source adjusted to generate initial structured light at an initial intensity level. The signal quality of structured light patterns reflected from one or more objects is evaluated based on the non-SL images and the initial SL images. If the signal quality of structured light patterns is below a threshold, a next set of SL images are captured by increasing the structured light level from a previous level until the signal of the structured light patterns is satisfactory.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Kang-Huai Wang, Gordon C. Wilson, Mark A. Hadley
  • Publication number: 20190287229
    Abstract: A method and apparatus of processing images captured from human gastrointestinal (GI) tract by a capsule camera are disclosed. High frame-rate images captured from human gastrointestinal (GI) tract by a capsule camera are received for processing. The high frame-rate images comprise first images at a first spatial resolution corresponding to a regular frame rate and second images at a second spatial resolution, the first images and the second images are interleaved, and the second spatial resolution is lower than the first spatial resolution. Motion models among the high frame-rate images are derived by applying image registration to the high frame-rate images. The high frame-rate images are stitched according to the motion models to generate stitching outputs comprising stitched images and non-stitched images. The stitching outputs are provided.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 19, 2019
    Inventors: Kang-Huai Wang, Yi Xu, Chenyu Wu
  • Patent number: 10402992
    Abstract: A method and apparatus for capturing images of a scene using a capsule device including a camera are disclosed. An image sequence is captured using the camera when the capsule device travels through a human gastrointestinal tract. Also, structured-light images are captured using the camera by projecting structured light to one or more objects in a field of view of the camera when the capsule device travels through the human gastrointestinal tract. The structured-light images are interleaved with regular images in the image sequence. The distance information with respect to the capsule camera associated with objects of the selected image is derived. Both the image sequence and the distance information are outputted. A method of determining the size of an object of interest utilizing the distance information is also disclosed. In another method, the distance information is used to scale object or adjust intensities.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 3, 2019
    Assignee: CapsoVision Inc.
    Inventors: Kang-Huai Wang, Chenyu Wu, Yi Xu
  • Publication number: 20190266724
    Abstract: A method and apparatus of image stitching using confidence level of image matching on image pair to be stitched are disclosed. According to the present invention, the first quality of image matching is determined for a current image based on feature matching on first image pairs corresponding to the current image and a neighboring image set. If the first quality of image matching for at least one first image pair satisfies a first quality criterion, then the second quality of image matching is determined based on pixel-domain matching for one or more candidate image pairs, where each candidate image pair has a corresponding first quality of image matching satisfying the first quality criterion. If the second quality of image matching for a candidate image pair satisfies a second quality criterion, then the matched image pair is stitched.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 29, 2019
    Inventors: Kang-Huai Wang, Chenyu Wu
  • Publication number: 20190239719
    Abstract: A capsule endoscopic system is disclosed, where the system comprises a capsule device and a docking device. The capsule device comprises a battery, a secondary coil, and a capsule housing to enclose the battery and the secondary coil in a sealed environment, where the capsule device consists of a first end and a second end in a longitudinal direction of the capsule device, and the battery is located in proximity to the first end and the secondary coil is located in proximity to the second end. The docking device comprises an opening on the docking device, a primary coil to generate an alternating magnetic field, and a primary core. The capsule endoscopic system is arranged so that at least a portion of the secondary coil is enclosed by the primary coil and the battery is outside the primary coil when the capsule device is at the docked position.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Gordon C. Wilson, Jiafu Luo, Kang-Huai Wang, Chung-Ta Lee
  • Publication number: 20190239720
    Abstract: A capsule endoscopic system is disclosed, where the system comprises a capsule device and a docking device. The capsule device comprises a battery, a secondary coil, and a capsule housing to enclose the battery and the secondary coil in a sealed environment, where the capsule device consists of a first end and a second end in a longitudinal direction of the capsule device, and the battery is located in proximity to the first end and the secondary coil is located in proximity to the second end. The docking device comprises an opening on the docking device, a primary coil to generate an alternating magnetic field, and a primary core. The capsule endoscopic system is arranged so that the primary coil is wrapped around at least a portion of the primary core.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Gordon C. Wilson, Jiafu Luo, Kang-Huai Wang, Chung-Ta Lee
  • Publication number: 20190239721
    Abstract: A capsule endoscopic system is disclosed, where the system comprises a capsule device and a docking device. The capsule device comprises a battery, a secondary coil, an optical transmitter all enclosed in a capsule housing. The docking device comprises a primary coil to generate an alternating magnetic field, a primary core and optical receiver to receive an optical signal. The alternating magnetic field is coupled to the secondary coil to supply power to the capsule device when the capsule device is at a docked position in the docking device. The primary core is arranged to concentrate the alternating magnetic field on the secondary coil when the capsule device is at the docked position. Furthermore, the capsule endoscopic system is arranged so that an optical path is formed between the optical transmitter and the optical receiver when the capsule device is at the docked position.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Gordon C. Wilson, Jiafu Luo, Kang-Huai Wang, Chung-Ta Lee
  • Patent number: 10346978
    Abstract: A method and apparatus for estimating or measuring a physical area or physical volume of an object of interest in one or more images captured using an endoscope are disclosed. According to the present method, an object of interest in an image or images is determined. Also, distance information associated with the object of interest with respect to an image sensor of the endoscope is received. The physical area size or physical volume size of the object of interest is then determined based on the image or images, and the distance information.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: July 9, 2019
    Assignee: CapsoVision Inc.
    Inventors: Kang-Huai Wang, Mark Hadley, Chenyu Wu