Patents by Inventor Kang Sub Yim

Kang Sub Yim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090325381
    Abstract: A method and apparatus for treating a substrate is provided. A porous dielectric layer is formed on the substrate. In some embodiments, the dielectric may be capped by a dense dielectric layer. The dielectric layers are patterned, and a dense dielectric layer deposited conformally over the substrate. The dense conformal dielectric layer seals the pores of the porous dielectric layer against contact with species that may infiltrate the pores. The portion of the dense conformal pore-sealing dielectric layer covering the field region and bottom portions of the pattern openings is removed by directional selective etch.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: KELVIN CHAN, Khaled A. Elsheref, Alexandros T. Demos, Meiyee Shek, Lipan Li, Li-Qun Xia, Kang sub Yim
  • Patent number: 7615482
    Abstract: Disclosed is a structure and method for forming a structure including a SiCOH layer having increased mechanical strength. The structure includes a substrate having a layer of dielectric or conductive material, a layer of oxide on the layer of dielectric or conductive material, the oxide layer having essentially no carbon, a graded transition layer on the oxide layer, the graded transition layer having essentially no carbon at the interface with the oxide layer and gradually increasing carbon towards a porous SiCOH layer, and a porous SiCOH (pSiCOH) layer on the graded transition layer, the porous pSiCOH layer having an homogeneous composition throughout the layer. The method includes a process wherein in the graded transition layer, there are no peaks in the carbon concentration and no dips in the oxygen concentration.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 10, 2009
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Daniel C. Edelstein, Alexandros Demos, Stephen M. Gates, Alfred Grill, Steven E. Molis, Vu Ngoc Tran Nguyen, Steven Reiter, Darryl D. Restaino, Kang Sub Yim
  • Patent number: 7611996
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Yi Zheng, Kang Sub Yim, Sang H. Ahn, Lester A. D'Cruz, Dustin W. Ho, Alexandros T. Demos, Li-Qun Xia, Derek R. Witty, Hichem M'Saad
  • Publication number: 20090093112
    Abstract: A method and apparatus for generating air gaps in a dielectric material of an interconnect structure. One embodiment provides a method for forming a semiconductor structure comprising depositing a first dielectric layer on a substrate, forming trenches in the first dielectric layer, filling the trenches with a conductive material, planarizing the conductive material to expose the first dielectric layer, depositing a dielectric barrier film on the conductive material and exposed first dielectric layer, depositing a hard mask layer over the dielectric barrier film, forming a pattern in the dielectric barrier film and the hard mask layer to expose selected regions of the substrate, oxidizing at least a portion of the first dielectric layer in the selected region of the substrate, removing oxidized portion of the first dielectric layer to form reversed trenches around the conductive material, and forming air gaps in the reversed trenches while depositing a second dielectric material in the reversed trenches.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventors: AMIR AL-BAYATI, Alexandros T. Demos, Kang Sub Yim, Mehul Naik, Zhenjiang 'David' Cui, Mihaela Balseanu, Meiyee (Maggie Le) Shek, Li-Qun Xia
  • Publication number: 20090053902
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 26, 2009
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Publication number: 20090017231
    Abstract: A method for depositing a low dielectric constant film on a substrate is provided. The low dielectric constant film is deposited by a process comprising reacting one or more organosilicon compounds and a porogen and then post-treating the film to create pores in the film. The one or more organosilicon compounds include compounds that have the general structure Si—CX—Si or —Si—O—(CH2)n—O—Si—. Low dielectric constant films provided herein include films that include Si—CX—Si bonds both before and after the post-treatment of the films. The low dielectric constant films have good mechanical and adhesion properties, and a desirable dielectric constant.
    Type: Application
    Filed: July 31, 2008
    Publication date: January 15, 2009
    Inventors: Kang Sub Yim, Alexandros T. Demos
  • Publication number: 20090017639
    Abstract: A method for depositing a low dielectric constant film on a substrate is provided. The low dielectric constant film is deposited by a process comprising reacting one or more organosilicon compounds and a porogen and then post-treating the film to create pores in the film. The one or more organosilicon compounds include compounds that have the general structure Si—CX—Si or —Si—O—(CH2)n—O—Si—. Low dielectric constant films provided herein include films that include Si—CX—Si bonds both before and after the post-treatment of the films. The low dielectric constant films have good mechanical and adhesion properties, and a desirable dielectric constant.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 15, 2009
    Inventors: Kang Sub Yim, Alexandros T. Demos
  • Patent number: 7465659
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Publication number: 20080233366
    Abstract: Disclosed is a structure and method for forming a structure including a SiCOH layer having increased mechanical strength. The structure includes a substrate having a layer of dielectric or conductive material, a layer of oxide on the layer of dielectric or conductive material, the oxide layer having essentially no carbon, a graded transition layer on the oxide layer, the graded transition layer having essentially no carbon at the interface with the oxide layer and gradually increasing carbon towards a porous SiCOH layer, and a porous SiCOH (pSiCOH) layer on the graded transition layer, the porous pSiCOH layer having an homogeneous composition throughout the layer. The method includes a process wherein in the graded transition layer, there are no peaks in the carbon concentration and no dips in the oxygen concentration.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, APPLIED MATERIALS, INC.
    Inventors: Daniel C. Edelstein, Alexandros Demos, Stephen M. Gates, Alfred Grill, Steven E. Molis, Vu Ngoc Tran Nguyen, Steven Reiter, Darryl D. Restaino, Kang Sub Yim
  • Patent number: 7422774
    Abstract: The present invention generally provides a method for depositing a low dielectric constant film using an e-beam treatment. In one aspect, the method includes delivering a gas mixture comprising one or more organosilicon compounds and one or more hydrocarbon compounds having at least one cyclic group to a substrate surface at deposition conditions sufficient to deposit a non-cured film comprising the at least one cyclic group on the substrate surface. The method further includes substantially removing the at least one cyclic group from the non-cured film using an electron beam at curing conditions sufficient to provide a dielectric constant less than 2.5 and a hardness greater than 0.5 GPa.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Yi Zheng, Srinivas D. Nemani, Li-Qun Xia, Eric Hollar, Kang Sub Yim
  • Patent number: 7422776
    Abstract: Low K dielectric films exhibiting low mechanical stress may be formed utilizing various techniques in accordance with the present invention. In one embodiment, carbon-containing silicon oxide films are formed by plasma-assisted chemical vapor deposition at low temperatures (300° C. or less). In accordance with another embodiment, as-deposited carbon containing silicon oxide films incorporate a porogen whose subsequent liberation reduces film stress.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Lihua Li Huang, Francimar Schmitt, Li-Qun Xia
  • Patent number: 7399364
    Abstract: A method of forming a cap layer over a dielecrtic layer on a substrate including forming a plasma from a process gas including oxygen and tetraethoxysilane, and depositing the cap layer on the dielectric layer, where the cap layer comprises a thickness of about 600 ? or less, and a compressive stress of about 200 MPa or more. Also, a method of forming a cap layer over a dielectric layer on a substrate including forming a process gas by flowing together about 200 mgm to about 8000 mgm of tetraethoxysilane, about 2000 to about 20000 sccm of oxygen (O2), and about 2000 sccm to about 20000 sccm of carrier gas, generating a plasma from the process gas, where one or more RF generators supply about 50 watts to about 100 watts of low frequency RF power to the plasma, and about 100 watts to about 600 watts of high frequency RF power to the plasma, and depositing the cap layer on the dielectric layer.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Vu Ngoc Tran Nguyen, Bok Hoen Kim, Kang Sub Yim
  • Patent number: 7297376
    Abstract: A method for depositing a low dielectric constant film is provided by positioning a substrate within a processing chamber having a powered electrode, and flowing into the processing chamber an initiation gas mixture of a flow rate of one or more organosilicon compounds and a flow rate of one or more oxidizing gases to deposit an initiation layer by applying an RF power to the electrode. The organosilicon compound flow rate is then ramped-up to a final flow rate to deposit a first transition layer, upon which one or more porogen compounds is introduced and the flow rate porogen compound is ramped up to a final deposition rate while depositing a second transition layer. A porogen doped silicon oxide layer is then deposited by flowing the final porogen and organosilicon flow rates until the RF power is turned off.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Kelvin Chan, Nagarajan Rajagopalan, Josephine Ju-Hwei Chang Liu, Sang H. Ahn, Yi Zheng, Sang In Yi, Vu Ngoc Tran Nguyen, Alexandros T. Demos
  • Patent number: 7285503
    Abstract: A method of forming a cap layer over a dielectric layer on a substrate including forming a plasma from a process gas including oxygen and tetraethoxysilane, and depositing the cap layer on the dielectric layer, where the cap layer comprises a thickness of about 600 ? or less, and a compressive stress of about 200 MPa or more. Also, a method of forming a cap layer over a dielectric layer on a substrate including forming a process gas by flowing together about 200 mgm to about 8000 mgm of tetraethoxysilane, about 2000 to about 20000 sccm of oxygen (O2), and about 2000 sccm to about 20000 sccm of carrier gas, generating a plasma from the process gas, where one or more RF generators supply about 50 watts to about 100 watts of low frequency RF power to the plasma, and about 100 watts to about 600 watts of high frequency RF power to the plasma, and depositing the cap layer on the dielectric layer.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: October 23, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Vu Ngoc Tran Nguyen, Bok Hoen Kim, Kang Sub Yim
  • Publication number: 20070207275
    Abstract: Methods for cleaning semiconductor processing chambers used to process carbon-containing films, such as amorphous carbon films, barrier films comprising silicon and carbon, and low dielectric constant films including silicon, oxygen, and carbon are provided. The methods include using a remote plasma source to generate reactive species that clean interior surfaces of a processing chamber in the absence of RF power in the chamber. The reactive species are generated from an oxygen-containing gas, such as O2, and/or a halogen-containing gas, such as NF3. An oxygen-based ashing process may also be used to remove carbon deposits from the interior surfaces of the chamber before the chamber is exposed to the reactive species from the remote plasma source.
    Type: Application
    Filed: August 23, 2006
    Publication date: September 6, 2007
    Inventors: Thomas Nowak, Kang Sub Yim, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Vu Ngoc Tran Nguyen, Dennis Singleton, Martin Jay Seamons, Karthik Janakiraman, Ganesh Balasubramanian, Mohamed Ayoub, Wendy H. Yeh, Alexandros T. Demos, Hichem M'Saad
  • Patent number: 7253123
    Abstract: A method for forming sidewall spacers on a gate stack by depositing one or more layers of silicon containing materials using PECVD process(es) on a gate structure to produce a spacer having an overall k value of about 3.0 to about 5.0. The silicon containing materials may be silicon carbide, oxygen doped silicon carbide, nitrogen doped silicon carbide, carbon doped silicon nitride, nitrogen doped silicon oxycarbide, or combinations thereof. The deposition is performed in a plasma enhanced chemical vapor deposition chamber and the deposition temperature is less than 450° C. The sidewall spacers so produced provide good capacity resistance, as well as excellent structural stability and hermeticity.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: August 7, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Reza Arghavani, Michael Chiu Kwan, Li-Qun Xia, Kang Sub Yim
  • Patent number: 7157384
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: January 2, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Patent number: 7060330
    Abstract: The present invention generally provides a method for depositing a low dielectric constant film using an e-beam treatment. In one aspect, the method includes delivering a gas mixture comprising one or more organosilicon compounds and one or more hydrocarbon compounds having at least one cyclic group to a substrate surface at deposition conditions sufficient to deposit a non-cured film comprising the at least one cyclic group on the substrate surface. The method further includes substantially removing the at least one cyclic group from the non-cured film using an electron beam at curing conditions sufficient to provide a dielectric constant less than 2.5 and a hardness greater than 0.5 GPa.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: June 13, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yi Zheng, Srinivas D. Nemani, Li-Qun Xia, Eric Hollar, Kang Sub Yim
  • Patent number: 7056560
    Abstract: A method for depositing a low dielectric constant film is provided by reacting a gas mixture including one or more linear, oxygen-free organosilicon compounds, one or more oxygen-free hydrocarbon compounds comprising one ring and one or two carbon-carbon double bonds in the ring, and one or more oxidizing gases. Optionally, the low dielectric constant film is post-treated after it is deposited. In one aspect, the post treatment is an electron beam treatment.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: June 6, 2006
    Assignee: Applies Materials Inc.
    Inventors: Kang Sub Yim, Yi Zheng, Srinivas D. Nemani, Li-Qun Xia, Eric P. Hollar
  • Patent number: 7008484
    Abstract: A showerhead adapted for distributing gases into a process chamber and a method for forming dielectric layers on a substrate are generally provided. In one embodiment, a showerhead for distributing gases in a processing chamber includes an annular body coupled between a disk and a mounting flange. The disk has a plurality of holes formed therethrough. A lip extends from a side of the disk opposite the annular body and away from the mounting flange. The showerhead may be used for the deposition of dielectric materials on a substrate. In one embodiment, silicon nitride and silicon oxide layers are formed on the substrate without removing the substrate from a processing chamber utilizing the showerhead of the present invention.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 7, 2006
    Assignee: Applied Materials Inc.
    Inventors: Kang Sub Yim, Soovo Sen, Dian Sugiarto, Peter Lee, Ellie Yieh