Patents by Inventor Kang Wang

Kang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10359493
    Abstract: An MRI system for performing time resolved MR imaging of an object with grouped data acquisition is provided. The MRI system includes an MRI controller in electronic communication with a magnet assembly and operative to sample a group of data points within a first region of a k-space. The first region includes a central sub-region and a first peripheral sub-region. The MRI controller is further operative to sample a group of data points within a second region of the k-space. The second region includes the central sub-region and a second peripheral sub-region different from the first peripheral sub-region.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 23, 2019
    Assignee: General Electric Company
    Inventors: Ersin Bayram, Naoyuki Takei, Yuji Iwadate, Kang Wang, Lloyd Estkowski
  • Patent number: 10356312
    Abstract: A camera device, a video auto-tagging method and a non-transitory computer readable medium thereof are provided. The camera device comprises a processor, a camera and a sensor module. The camera is configured to capture a video. The sensor module is configured to generate distinctive sensing information after sensing a distinctive motion event of an user. The processor is configured to create a timing tag for the video according to the distinctive sensing information.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: July 16, 2019
    Assignee: HTC CORPORATION
    Inventors: Yuan-Mao Tsui, Yuan-Kang Wang, Wen-Chien Liu
  • Patent number: 10352161
    Abstract: A downhole tool operable to pump a volume of contaminated fluid from a subterranean formation during an elapsed pumping time while obtaining in-situ, real-time data associated with the contaminated fluid. The contaminated fluid includes native formation fluid and oil-based mud (OBM) filtrate. A shrinkage factor of the contaminated fluid is determined based on the in-situ, real-time data. The contaminated fluid shrinkage factor is fit relative to pumped volume or pumping time to obtain a function relating the shrinkage factor with pumped volume or elapsed pumping time. A shrinkage factor of the native formation fluid is determined based on the function. A shrinkage factor of the OBM filtrate is also determined. OBM filtrate volume percentage is determined based on the shrinkage factor of the native formation fluid and the shrinkage factor of the OBM filtrate.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 16, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Adriaan Gisolf, Kang Wang, Ryan Sangjun Lee
  • Patent number: 10352698
    Abstract: Disclosed is a composite hydrological monitoring system, in which a counterweight component and a test component are respectively connected to both opposite ends of a strip and a plurality of sensors are disposed at different vertical positions. Accordingly, the scour depth can be measured by sensing the location of the counterweight component, whereas the water level and/or flow velocity can be determined by signals from the sensors. When the counterweight component moves downward with sinking of the riverbed, the strip would be pulled down and thus causes the test component to present a change in mechanical energy. Accordingly, the sinking depth can be measured by sensing the change of the mechanical energy. Additionally, since the water level variation would cause signal changes of the sensors arranged in a row along a vertical direction, the change of water level can be determined accordingly.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: July 16, 2019
    Assignee: National Applied Research Laboratories
    Inventors: Yung-Bin Lin, Yu-Chieh Chen, Tai-Shan Liao, Kuo-Chun Chang, Bo-Han Lee, Yung-Kang Wang, Meng-Huang Gu
  • Publication number: 20190189910
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a first metal oxide (Mox) layer and second metal oxide (tunnel barrier) to produce perpendicular magnetic anisotropy (PMA) in the FL. In some embodiments, conductive metal channels made of a noble metal are formed in the Mox that is MgO to reduce parasitic resistance. In a second embodiment, a discontinuous MgO layer with a plurality of islands is formed as the Mox layer and a non-magnetic hard mask layer is deposited to fill spaces between adjacent islands and form shorting pathways through the Mox. In another embodiment, end portions between the sides of a center Mox portion and the MTJ sidewall are reduced to form shorting pathways by depositing a reducing metal layer on Mox sidewalls, or performing a reduction process with forming gas, H2, or a reducing species.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Inventors: Sahil Patel, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Dongna Shen, Yu-Jen Wang, Po-Kang Wang, Huanlong Liu
  • Publication number: 20190189911
    Abstract: A laminated seed layer stack with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sequentially sputter depositing a first seed layer, a first amorphous layer, a second seed layer, and a second amorphous layer where each seed layer may be Mg and has a resputtering rate 2 to 30X that of the amorphous layers that are TaN, SiN, or a CoFeM alloy. A template layer that is NiCr or NiFeCr is formed on the second amorphous layer. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The laminated seed layer stack may include a bottommost Ta or TaN buffer layer.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: Jian Zhu, Guenole Jan, Yuan-Jen Lee, Huanlong Liu, Ru-Ying Tong, Po-Kang Wang
  • Patent number: 10316656
    Abstract: A method includes identifying linearly behaving data within obtained data associated with fluid obtained from a subterranean formation. Shrinkage factor is determined based on the linearly behaving data. A function relating GOR data of the obtained fluid with the determined shrinkage factor is determined. A first linear relationship between optical density (OD) data of the obtained fluid and the function is determined. A second linear relationship between density data of the obtained fluid and the function is determined. An oil-based mud (OBM) filtrate contamination property of OBM filtrate within the obtained fluid based on the first linear relationship is determined. A native formation property of native formation fluid within the obtained fluid based on the second linear relationship is determined. A volume fraction of OBM filtrate contamination within the obtained fluid based on the OBM filtrate contamination property and the native formation property is estimated.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: June 11, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Kang Wang, Adriaan Gisolf, Ryan Sangjun Lee, Oliver C. Mullins, Shu Pan
  • Patent number: 10316655
    Abstract: A method for performing contamination monitoring through estimation wherein measured data for optical density, gas to oil ratio, mass density and composition of fluid components are used to obtain plotting data and the plotting data is extrapolated to obtain contamination levels.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 11, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Adriaan Gisolf, Ryan Lee, Cosan Ayan, Hadrien Dumont, Kang Wang, Chetankumar Desai, Oliver Mullins, Beatriz Barbosa
  • Publication number: 20190156260
    Abstract: A method of data update, for determining a material qualification status of at least one supplier according to a plurality of smelters of a material used by the at least one supplier, the method comprising obtaining a qualified smelter list of the material from a predetermined website; and comparing the qualified smelter list of the material with a material list of the at least one supplier corresponding to the material to determine the material qualification status of the at least one supplier, so as to perform a violation warning operation; wherein the material list of each supplier of the material list of the at least one supplier denotes the plurality of smelters of the material used by the at least one supplier in system codes; wherein the qualified smelter list denotes a plurality of qualified smelters of the material in international codes.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 23, 2019
    Inventors: Yu-Zhen Huang, Chun-Kang Wang, Hsiao-Fan Chu, Chih-Cheng Chen, Jia-Hao Chen, Min-Hsiang Yang
  • Patent number: 10294785
    Abstract: Disclosed are methods and apparatus obtaining in-situ, real-time data associated with a sample stream obtained by a downhole sampling apparatus disposed in a borehole that extends into a subterranean formation. The obtained data includes multiple fluid properties of the sample stream. The sample stream includes native formation fluid from the subterranean formation and filtrate contamination resulting from formation of the borehole in the subterranean formation. The obtained data is filtered to remove outliers. The filtered data is fit to each of a plurality of models each characterizing a corresponding one of the fluid properties as a function of a pumpout volume or time of the sample stream. Based on the fitted data, a start of a developed flow regime of the native formation fluid within the subterranean formation surrounding the borehole is identified.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 21, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Kang Wang, Ryan Sangjun Lee, Youxiang Zuo, Sai Venkatakrishnan, XiaoWei Sheng, Suchart Chokthanyawat, Lei Jiang, Lixiang Sun
  • Patent number: 10281561
    Abstract: A quadrature self-injection-locked radar utilizes a phase shifter to make a oscillation signal operating in two phase modes, and utilizes a frequency demodulator for frequency demodulation and a signal processor for signal processing to eliminate the nonlinear distortion caused by self-injection locked phenomenon. Therefore, the self-injection locked radar can be applied to more cases for detecting displacement variations with any range.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 7, 2019
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Fu-Kang Wang, Tzyy-Sheng Horng, Mu-Cyun Tang
  • Patent number: 10283794
    Abstract: A porous solid oxide fuel cell (PSOFC) system for electricity and syngas co-generation. The system has a porous layer, a porous electrolyte layer with catalyst, a porous anode layer, and a porous catalyst layer. A fuel air/O2 mixture is introduced from through the porous cathode layer so that it next passes through the porous electrolyte layer with catalyst, then the porous anode layer, and finally the porous catalyst layer. Syngas exits the porous catalyst layer with electricity being produced across the anode and cathode layers.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 7, 2019
    Assignee: Syracuse University
    Inventors: Jeongmin Ahn, Ryan Milcarek, Kang Wang, Pingying Zeng
  • Publication number: 20190116408
    Abstract: Sound is blocked from entering a sound pickup area of a sound pickup device by placing a sound control structure adjacent to the sound pickup area. The sound control structure can include a sound absorbing material which can be placed in a first position that blocks sound, or in a second position that allows sound to pass. The sound control structure can alternately include levers that engage buttons on the sound pickup area that enable or disable the sound pickup area.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 18, 2019
    Inventor: Kang WANG
  • Patent number: 10230044
    Abstract: A laminated seed layer stack with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sequentially sputter depositing a first seed layer, a first amorphous layer, a second seed layer, and a second amorphous layer where each seed layer may be Mg and has a resputtering rate 2 to 30× that of the amorphous layers that are TaN, SiN, or a CoFeM alloy. A template layer that is NiCr or NiFeCr is formed on the second amorphous layer. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The laminated seed layer stack may include a bottommost Ta or TaN buffer layer.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 12, 2019
    Assignee: Headway Technologies, Inc.
    Inventors: Jian Zhu, Guenole Jan, Yuan-Jen Lee, Huanlong Liu, Ru-Ying Tong, Po-Kang Wang
  • Publication number: 20190066417
    Abstract: A mobile computing device captures an image of an identification code on an object that identifies the object, extracts the code from the image, and forwards the code and a user ID to a server, which responds with digital key when the user ID has been verified. The mobile computing device converts the digital key into a pulsed light sequence that represents the digital key. An unlocking device attached to the object detects the pulsed light sequence, recovers the digital key from the pulsed light sequence, compares the recovered digital key to a pre-stored digital key, and unlocks the device when the recovered digital key matches the pre-stored digital key.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Inventors: Kang WANG, Zhengbo WANG
  • Publication number: 20190057721
    Abstract: The present disclosure provides an electronic device for generating a multiple point of view (MPOV) video and the method thereof. The present disclosure involves the electronic device to obtain a plurality of media contents. The electronic device would identify a first media content relating to a second media content in time and location according to time information, audio information, and location information including a geographic tag and a surrounding signal information. Then, the first media content and the second media content are provided as relevant media contents for generating the MPOV video of the event having the relevant media content captured from different point of view.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Applicant: HTC Corporation
    Inventors: Wen-Ping Ying, Yuan-Kang Wang, Hira Singh Verick, Jing-Lung Wu, Wen-Chuan Lee, Chia-Wei Chen, Kenneth Todd Culos, Wei-Chih Kuo, Ming-Han Tsai, Hsin-Ti Chueh, Tai Ito
  • Patent number: 10203379
    Abstract: A method of forming a sensor array comprising a series connection of parallel GMR sensor stripes that provides a sensitive mechanism for detecting the presence of magnetized particles bonded to biological molecules that are affixed to a substrate. The adverse effect of hysteresis on the maintenance of a stable bias point for the magnetic moment of the sensor free layer is eliminated by a combination of biasing the sensor along its longitudinal direction rather than the usual transverse direction and by using the overcoat stress and magnetostriction of magnetic layers to create a compensatory transverse magnetic anisotropy. By making the spaces between the stripes narrower than the dimension of the magnetized particle and by making the width of the stripes equal to the dimension of the particle, the sensitivity of the sensor array is enhanced.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 12, 2019
    Assignee: Headway Technologies, Inc.
    Inventors: Po-Kang Wang, Xizeng Shi, Chyu-Jiuh Torng
  • Patent number: 10200838
    Abstract: The disclosure is directed to a method of providing location information for a mobile electronic device and a mobile electronic device using the same method. In one of the exemplary embodiments, the mobile electronic device would receive a first signal that indicates capturing a multimedia file. In response to receiving the first signal, the mobile electronic device would transmit to an external device a second signal in response to receiving the first signal. In response to transmitting the second signal, the mobile electronic device may receive from the external device a first location information or an ephemeris. The mobile electronic device may then determine the first location information either based on the first location information as received or based on the ephemeris. Also, the mobile electronic device may associate the multimedia file with the first location information.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: February 5, 2019
    Assignee: HTC Corporation
    Inventors: Yuan-Kang Wang, Wen-Chuan Lee, Ko-Hsin Hsiang, Wen-Chien Liu
  • Patent number: 10193062
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to increase thermal stability. In some embodiments, a continuous or discontinuous metal (M) or MQ alloy layer within the FL reacts with scavenged oxygen to form a partially oxidized metal or alloy layer that enhances PMA and maintains acceptable RA. M is one of Mg, Al, B, Ca, Ba, Sr, Ta, Si, Mn, Ti, Zr, or Hf, and Q is a transition metal, B, C, or Al. Methods are also provided for forming composite free layers where interfacial perpendicular anisotropy is generated therein by contact of the free layer with oxidized materials.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: January 29, 2019
    Assignee: Headway Technologies, Inc.
    Inventors: Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong, Po-Kang Wang
  • Patent number: 10190396
    Abstract: A downhole tool, surface equipment, and/or remote equipment are utilized to obtain data associated with a subterranean hydrocarbon reservoir, fluid contained therein, and/or fluid obtained therefrom. At least one condition indicating that a density inversion exists in the fluid contained in the reservoir is identified from the data. Molecular sizes of fluid components contained within the reservoir are estimated from the data. A model of the density inversion is generated based on the data and molecular sizes. The density inversion model is utilized to estimate the density inversion amount and depth and time elapsed since the density inversion began to form within the reservoir. A model of a gravity-induced current of the density inversion is generated based on the data and the density inversion amount, depth, and elapsed time.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: January 29, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yi Chen, Kang Wang, Oliver C. Mullins, Youxiang Zuo