Patents by Inventor Kaoru Umemura

Kaoru Umemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070158564
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Application
    Filed: February 15, 2007
    Publication date: July 12, 2007
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Publication number: 20070158560
    Abstract: Provided is a technique for accurately taking out a defect detected by an electron beam, and for analyzing the defect. In this technique, a defective portion in a wafer is detected by the irradiation of the electron beam. A mark made of a deposition layer is formed by irradiating the electron beam onto the defective portion while supplying a deposition gas thereto. On the basis of this mark, the defective portion is machined into a sample piece by using a projection ion beam generated from a gas ion source, and thereby the defective portion is taken out.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 12, 2007
    Inventors: Noriyuki Kaneoka, Kaoru Umemura, Koji Ishiguro
  • Publication number: 20070158591
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Application
    Filed: February 15, 2007
    Publication date: July 12, 2007
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasahiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, HIdeo Kashima, Kaoru Umemura
  • Patent number: 7242015
    Abstract: An electron beam (area beam) having a fixed area is irradiated onto the surface of a semiconductor sample, and reflected electrons from the sample surface are imaged by the imaging lens, and images of a plurality of regions of the surface of the semiconductor sample are obtained and stored in the image storage unit, and the stored images of the plurality of regions are compared with each other, and the existence of a defect in the regions and the defect position are measured. By doing this, in an apparatus for testing a pattern defect of the same design, foreign substances, and residuals on a wafer in the manufacturing process of a semiconductor apparatus by an electron beam, speeding-up of the test can be realized.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 10, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Shinada, Yusuke Yajima, Hisaya Murakoshi, Masaki Hasegawa, Mari Nozoe, Atsuko Takafuji, Katsuya Sugiyama, Katsuhiro Kuroda, Kaoru Umemura, Yasutsugu Usami
  • Publication number: 20070152174
    Abstract: In an aperture for use in an ion beam optical system having its surface coated with a liquid metal, instability of an ion source attributable to sputtering and re-deposition of an aperture base material is prevented. A focused ion beam apparatus using a liquid metal ion source has an aperture for limiting an ion beam diameter. The aperture has a vessel formed with a recess having, at its surface lowermost point, an aperture hole through which the ion beam passes and a liquid metal mounted on the recess, the liquid metal being used for the liquid metal ion source. Preferably, the aperture may be minimized in area of aperture entrance hole inner surface which exposes the base material by tapering an aperture hole portion, by which the ion beam passes, on the downstream side.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 5, 2007
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yuichi Madokoro, Shigeru Izawa, Kaoru Umemura, Hiroyasu Kaga
  • Publication number: 20070145302
    Abstract: A system for analyzing a semiconductor device, including: a first specimen fabricating apparatus including: a vacuum chamber in which a sample substrate is placed, an ion beam irradiating optical system for forming a specimen on the sample substrate, a specimen holder to mount the specimen, and a probe for removing the specimen from the sample substrate; a second specimen fabricating apparatus, and an analyzer to analyze the specimen, wherein said first specimen fabrication apparatus has a function to separate the specimen mounted on the specimen holder and the probe in a vacuum condition.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 28, 2007
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20070145300
    Abstract: A specimen fabrication apparatus, including: an ion beam irradiating optical system to irradiate a sample placed in a chamber, with an ion beam, a specimen holder to mount a specimen separated by the irradiation of the ion beam, a holder cassette to hold the specimen holder, and a sample stage to hold the sample and the holder cassette, wherein said holder cassette is transferred to outside of the chamber in a condition of holding said specimen holder with the specimen mounted.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 28, 2007
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20070145301
    Abstract: A specimen fabrication apparatus including: a vacuum chamber that accommodates a sample stage to mount a sample, an irradiating optical system that irradiates a focused ion beam to the sample to form a specimen, and a specimen holder placed in the vacuum chamber, to which said formed specimen is transferred by transferring means while the specimen chamber remains substantially sealed.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 28, 2007
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20070145299
    Abstract: A specimen fabrication apparatus including: a sample stage to mount or hold a sample substrate, an ion beam irradiating optical system to irradiate the sample substrate with an ion beam, a specimen holder to mount a specimen obtained from the sample substrate, a transferring means including a probe, and a deposition-gas supplying source to supply a deposition-gas for forming a deposition-film between the specimen and the probe.
    Type: Application
    Filed: February 2, 2007
    Publication date: June 28, 2007
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20070112533
    Abstract: After completion of an arbitrary device process, an apparatus for micro-sample extraction extracts a part of a wafer as a micro-sample of a size equal to or larger than a repetition pattern with a probe and places the extracted micro-sample to a micro-sample storage, and the micro-sample storage is stored into an apparatus for micro-sample storage. The wafer is subjected to a post process and an observation desired position is determined in response to a failure analysis requirement. After that, the micro-sample is unloaded from the micro-sample storage by an apparatus for additional processing of the micro-sample and is placed onto an observation sample holder. By performing an additional process in the observation desired position, a failure analysis sample is prepared, and analysis information obtained by an apparatus for failure analysis is output.
    Type: Application
    Filed: January 3, 2007
    Publication date: May 17, 2007
    Inventors: Satoshi Tomimatsu, Hiroyasu Shichi, Muneyuki Fukuda, Kaoru Umemura
  • Patent number: 7211805
    Abstract: An emitter of a Ga liquid metal ion source is constituted to include W12 of a base material and Ga9 of an ion source element covering a surface as construction materials. By making back-sputtered particles become elements (W and Ga) of the Ga liquid metal ion sour source, if back-sputtered particles attach to the Ga liquid metal ion source, contamination which may change physical characteristics of Ga9 does not occur. A W aperture is used as a beam limiting (GUN) aperture to place Ga of approx. 25 mg (of melting point of 30° C.) on a surface of a portion included in a beam emission region (Ga store). When emitting ions to the beam limiting (GUN) aperture, Ga in the emission region melts and diffuses on a surface of the beam emission region of the W aperture.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 1, 2007
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Kaga, Yuichi Madokoro, Shigeru Izawa, Tohru Ishitani, Kaoru Umemura
  • Patent number: 7205560
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: April 17, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Patent number: 7205554
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: April 17, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Patent number: 7200506
    Abstract: After completion of an arbitrary device process, an apparatus for micro-sample extraction extracts a part of a wafer as a micro-sample of a size equal to or larger than a repetition pattern with a probe and places the extracted micro-sample to a micro-sample storage, and the micro-sample storage is stored into an apparatus for micro-sample storage. The wafer is subjected to a post process and an observation desired position is determined in response to a failure analysis requirement. After that, the micro-sample is unloaded from the micro-sample storage by an apparatus for additional processing of the micro-sample and is placed onto an observation sample holder. By performing an additional process in the observation desired position, a failure analysis sample is prepared, and analysis information obtained by an apparatus for failure analysis is output.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: April 3, 2007
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Satoshi Tomimatsu, Hiroyasu Shichi, Muneyuki Fukuda, Kaoru Umemura
  • Patent number: 7189982
    Abstract: In an aperture for use in an ion beam optical system having its surface coated with a liquid metal, instability of an ion source attributable to sputtering and re-deposition of an aperture base material is prevented. A focused ion beam apparatus using a liquid metal ion source has an aperture for limiting an ion beam diameter. The aperture has a vessel formed with a recess having, at its surface lowermost point, an aperture hole through which the ion beam passes and a liquid metal mounted on the recess, the liquid metal being used for the liquid metal ion source. Preferably, the aperture may be minimized in area of aperture entrance hole inner surface which exposes the base material by tapering an aperture hole portion, by which the ion beam passes, on the downstream side.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 13, 2007
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuichi Madokoro, Shigeru Izawa, Kaoru Umemura, Hiroyasu Kaga
  • Patent number: 7176458
    Abstract: A specimen fabrication apparatus including: an ion source, an optical system for irradiating a projection ion beam to a sample, wherein the optical system includes a patterning mask to form a ion beam emitted from the ion source into the projection ion beam, a sample stage to mount the sample, a vacuum specimen chamber to contain the sample stage, a probe for separating a micro-specimen from the sample by irradiation of the projection ion beam, a specimen holder to fix the micro-specimen, wherein the projection ion beam is irradiated to the micro-specimen fixed to the specimen holder and extracted by the probe in the specimen chamber, so that a finish fabrication to the micro-specimen is enabled.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: February 13, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20060284115
    Abstract: A technique is provided which can precisely form a deposition pile in a hole bored in the surface of a specimen. In ion beam apparatus and analysis method, the specimen surface is bored or a deposition pile is formed in the hole bored in the specimen surface. A measuring instrument is provided for measuring a height of the hole bored in the specimen surface or a height of the deposition pile formed in the hole. During fabrication of boring the hole in the specimen surface or fabrication of filling the hole bored in the specimen surface, an image of an area encompassing the hole and the depth of the hole or the height of the deposition pile are displayed.
    Type: Application
    Filed: May 24, 2006
    Publication date: December 21, 2006
    Inventors: Noriyuki Kaneoka, Kaoru Umemura, Koji Ishiguro, Hiroyasu Shichi, Satoshi Tomimatsu
  • Patent number: 7145146
    Abstract: A micro-spectroscopic measuring device having a structure in which a spectroscopic element made of an array of photonic crystals with defects, flow paths for introducing a sample, and light detecting elements with sensitivity to a band from near infrared to infrared are stacked.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: December 5, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Taro Ogawa, Toshiki Sugawara, Kazuhiko Hosomi, Masataka Shirai, Toshio Katsuyama, Kaoru Umemura, Masaru Izawa, Kazuhiko Sagara, Hiroshi Kakibayashi
  • Patent number: 7138628
    Abstract: A specimen fabrication apparatus including: a specimen chamber, a sample stage in the specimen chamber, to mount a specimen substrate, a transfer unit to extract a micro-specimen from the specimen substrate, and to transfer the micro-specimen, within the specimen chamber; a specimen holder in the specimen chamber, to receive the micro-specimen from the transfer unit, and to have the micro-specimen affixed thereto, and an irradiating optical system to irradiate an ion beam to the specimen substrate or to the micro-specimen affixed to the specimen holder, wherein the transfer unit effects transfer of the micro-specimen from the specimen substrate to the specimen holder, and the irradiating optical system irradiates the ion beam onto the micro-specimen affixed to the specimen holder, while the specimen chamber remains substantially sealed.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 21, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Tomimatsu, Kaoru Umemura, Yuichi Madokoro, Yoshimi Kawanami, Yasunori Doi
  • Publication number: 20060249697
    Abstract: A method and system for separating and preparing a sample for analysis from a wafer without contaminating the wafer with an element such as Ga. A first ion beam is irradiated on a sample and scanned to fabricate a micro sample from a part of the sample. A probe for separating the micro sample from the sample and a micro-sample stage on which the micro sample is to be placed and held are provided. The first ion beam contains at least one of an inert gas, oxygen and nitrogen as an element. A second ion beam contains an element different from the element of the first ion beam. The separated micro sample is fed to the second ion beam from the apparatus of the first ion beam while being held on the micro-sample stage, and is processed by using the second ion beam.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 9, 2006
    Inventors: Hiroyasu Shichi, Kaoru Umemura, Muneyuki Fukuda