Patents by Inventor Karen K. Gleason

Karen K. Gleason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8779071
    Abstract: One aspect of the invention relates to a linker-free, one-step method of grafting polymer films onto organic substrates, and the films obtained by such a method. In certain embodiments, the grafted polymer films are conductive. In certain embodiments, said grafting method utilizes the ability for Friedel-Crafts catalyst to form radical cations from organic substrates. In one embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films grafted to organic substrates. In other embodiments, the method is applicable to the polymerization of other monomers to yield conducting polymers, such as polyanilines, polypyrroles, polyfurans, polythiophenes and their derivatives. Remarkably, the polymer films grafted by the inventive methods show enormous increases in adhesion strength. Further, in certain embodiments, polymer patterns were easily obtained using the inventive methods and soft lithography techniques.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 15, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Sung G. Im
  • Publication number: 20140193925
    Abstract: A chemiresistive biosensor for detecting an analyte can include a high specific surface area substrate conformally coated with a conductive polymer, and a binding reagent immobilized on the conductive polymer, wherein the binding reagent has a specific affinity for the analyte. The conductive polymer can be deposited on a substrate by oCVD.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 10, 2014
    Inventors: Dhiman Bhattacharyya, Karen K. Gleason
  • Publication number: 20140186620
    Abstract: Embodiments described herein are related to methods for processing substrates such as silicon substrates. In some cases, the method may provide the ability to passivate a silicon surface at relatively low temperatures and/or in the absence of a solvent. Methods described herein may be useful in the fabrication of a wide range of devices, including electronic devices such as photovoltaic devices, solar cells, organic light-emitting diodes, sensors, and the like.
    Type: Application
    Filed: November 20, 2013
    Publication date: July 3, 2014
    Inventors: Karen K. Gleason, Rong Yang, Yaron Segal, Tonio Buonassisi, Baby Reeja Jayan
  • Patent number: 8765458
    Abstract: The invention provides coated sensors for detecting the presence of analytes. The sensor comprises one or more fluorescent sources, such as one or more quantum dots or one or more fluorescent dyes, a polymeric matrix, a surface coating, and one or more analyte sensing components. The surface coating may be a conformal polymeric film, permeable to the analyte, which may be deposited via a solventless process such as initiated chemical vapor deposition or photoinitiated chemical vapor deposition. The surface coating may increase the biocompatibility of the sensor, reduce nonspecific protein adsorption, and/or sequester functional sensor components within the sensor. The invention also provides methods for detecting the presence of an analyte with coated sensors of the invention.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: July 1, 2014
    Assignees: The Charles Stark Draper Laboratory, Inc., Massachusetts Institute of Technology
    Inventors: Heather A. Clark, Karen K. Gleason, Salmaan Baxamusa, John M. Dubach
  • Publication number: 20140127822
    Abstract: One aspect of the invention relates to an ultrathin micro-electromechanical chemical sensing device which uses swelling or straining of a reactive organic material for sensing. In certain embodiments, the device comprises a contact on-off switch chemical sensor. For example, the device can comprises a small gap separating two electrodes, wherein the gap can be closed as a result of the swelling or stressing of an organic polymer coating on one or both sides of the gap. In certain embodiments, the swelling or stressing is due to the organic polymer reacting with a target analyte.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 8, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: William Jay Arora, Karen K. Gleason, George Barbastathis, Wyatt E. Tenhaeff
  • Publication number: 20140017454
    Abstract: One aspect of the invention relates to a method of forming a micro- or nano-pattern on the surface of a composite material. The pattern may be a herringbone pattern with a jog angle of greater than or less than 90° or a graded wrinkled pattern. The micro- or nano-patterns on composite materials produced by the methods may be used to modulate, confer or control thin film material properties; as the basis for thickness measurements; to enhance light extraction in OLED; to enhance light harvest in opto-electronic devices; to tune adhesion properties, wetting, and friction of surfaces; to reduce fluid flow drag; and for anti-fouling purposes.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 16, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Mary Cunningham Boyce, Karen K. Gleason, Jose Luis Yague, Jie Yin, Shabnam Raayai Ardakani
  • Publication number: 20130320302
    Abstract: The present invention generally relates to devices comprising graphene and a conductive polymer (e.g., poly(3,4-ethylenedioxythiophene) (PEDOT)), and related systems and methods. In some embodiments, the conductive polymer is formed by oxidative chemical vapor deposition.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Hyesung Park, Rachel M. Howden, Jing Kong, Karen K. Gleason
  • Publication number: 20130280442
    Abstract: Methods for improving the adhesion of vacuum deposited coatings to a wide variety of substrates are described herein. The methods include utilizing a thermal source to generate free radical species which are then contacted to the substrate to be coated. Chemical vapor deposition, particularly initiated chemical vapor deposition (iCVD) can be used to form polymer thin films in situ without the need to remove the substrate from the chamber or even return to atmospheric pressure. Significant improvements in substrate adhesion of the subsequently deposited films have been observed over a range of substrate and coating materials.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 24, 2013
    Inventors: Karen K. Gleason, James Samuel Peerless, W. Shannan O'Shaughnessy
  • Publication number: 20130280485
    Abstract: Described herein are methods of preparing superhydrophobic and oleophobic surfaces by grafting poly(perfluoroalkyl acrylate) chains on silicon substrates with initiated chemical vapor deposition. The grafting enhances the formation of the crystalline phase. The crystalline structures reduce the polymer chain mobility, resulting in nonwetting surfaces with respect to both water and mineral oil.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Anna Maria Coclite, Karen K. Gleason, Yujun Shi
  • Patent number: 8552131
    Abstract: Disclosed is a substantially alternating copolymer that is conformal, hard, flexible, and has low oxygen permeability. Also disclosed is an iCVD-based method of coating a substrate with the substantially alternating copolymer.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: October 8, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Jingjing Xu
  • Publication number: 20130260014
    Abstract: The invention provides coated sensors for detecting the presence of analytes. The sensor comprises one or more fluorescent sources, such as one or more quantum dots or one or more fluorescent dyes, a polymeric matrix, a surface coating, and one or more analyte sensing components. The surface coating may be a conformal polymeric film, permeable to the analyte, which may be deposited via a solventless process such as initiated chemical vapor deposition or photoinitiated chemical vapor deposition. The surface coating may increase the biocompatibility of the sensor, reduce nonspecific protein adsorption, and/or sequester functional sensor components within the sensor. The invention also provides methods for detecting the presence of an analyte with coated sensors of the invention.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 3, 2013
    Inventors: Heather A. Clark, Karen K. Gleason, Salmaan Baxamusa, John M. Dubach
  • Publication number: 20130260054
    Abstract: Disclosed are simple, efficient, and scalable methods of patterning polymeric or metallic microstructures on planar or non-planar surfaces. The methods utilize initiated chemical vapor deposition (iCVD) technology. Also disclosed are patterned articles produced by these methods, and methods of using the articles.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 3, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Christy D. Petruczok
  • Publication number: 20130251953
    Abstract: Disclosed is a substantially alternating copolymer that is conformal, hard, flexible, and has low oxygen permeability. Also disclosed is an iCVD-based method of coating a substrate with the substantially alternating copolymer.
    Type: Application
    Filed: February 12, 2013
    Publication date: September 26, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Karen K. Gleason, Jingjing Xu
  • Publication number: 20130244008
    Abstract: Method for tailoring permeability of materials. The method establishes a pattern of vertically aligned nanowires on a substrate and a physical shadow mask is provided to protect selected features of the pattern. A polymer is selectively infiltrated, using chemical vapor disposition, into interstices in the vertically aligned carbon nanotubes to establish a selected permeability. A cover over the infiltrated vertically aligned nanowires is provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian Lee Wardle, Fabio Fachin, Karen K. Gleason, Ayse Asatekin
  • Publication number: 20130224380
    Abstract: Described herein are reactors capable of sequentially or simultaneously depositing thin-film polymers onto a substrate by oxidative chemical vapor deposition (oCVD), initiated chemical vapor deposition (iCVD), and plasma-enhanced chemical vapor deposition (PECVD). The single-unit CVD reactors allow for the use of more than one CVD process on the same substrate without the risk of inadvertently exposing the substrate to ambient conditions when switching processes. Furthermore, the ability to deposit simultaneously polymers made by two different CVD processes allows for the exploration of new materials. In addition to assisting in the deposition of polymer films, plasma processes may be used to pretreat substrate surfaces before polymer deposition, or to clean the internal surfaces of the reactor between experiments.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Dhiman Bhattacharyya, Karen K. Gleason, Miles C. Barr
  • Publication number: 20130197326
    Abstract: Disclosed herein are compositions comprising an oblong optode sensing agent. The oblong optode sensing agent comprises a core and a semipermeable membrane, wherein the core comprises one or more sensors configured to bind to an analyte. In addition, methods of making and detecting the oblong optode sensing agents are disclosed.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 1, 2013
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: John Matthew DUBACH, Heather A. CLARK, Karen K. GLEASON, Gozde OZAYDIN-INCE
  • Publication number: 20130171738
    Abstract: A chemical sensor that works while being submerged in a highly conductive medium is described. The chemical sensor includes hydrophobic structures that are distributed on conductive electrodes and are separated by small air cavities while submerged in the conductive medium. The hydrophobic structures are arranged such that their hydrophobicity varies in response to exposure to a target analyte. The change in the level of hydrophobicity results in permeation of the conductive liquid on to the conductive electrodes, thereby reducing the resistance levels between the conductive electrodes. The sensor indicates presence of the target analyte in response to detection of a change in resistance between at least two of the conductive electrodes.
    Type: Application
    Filed: June 17, 2011
    Publication date: July 4, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Hyungryul Johnny Choi, Ayse Asatekin Alexiou, Se Young Yang, Christy D. Petruczok, Karen K. Gleason, Nicholas M. Patrikalakis, George Barbastathis
  • Patent number: 8470300
    Abstract: The invention provides coated sensors for detecting the presence of analytes. The sensor comprises one or more fluorescent sources, such as one or more quantum dots or one or more fluorescent dyes, a polymeric matrix, a surface coating, and one or more analyte sensing components. The surface coating may be a conformal polymeric film, permeable to the analyte, which may be deposited via a solventless process such as initiated chemical vapor deposition or photoinitiated chemical vapor deposition. The surface coating may increase the biocompatibility of the sensor, reduce nonspecific protein adsorption, and/or sequester functional sensor components within the sensor. The invention also provides methods for detecting the presence of an analyte with coated sensors of the invention.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: June 25, 2013
    Assignees: The Charles Stark Draper Laboratory, Inc., Massachusetts Institute of Technology
    Inventors: Heather A. Clark, Karen K. Gleason, Salmaan Baxamusa, John M. Dubach
  • Patent number: 8441081
    Abstract: One aspect of the invention relates to an ultrathin micro-electromechanical chemical sensing device which uses swelling or straining of a reactive organic material for sensing. In certain embodiments, the device comprises a contact on-off switch chemical sensor. For example, the device can comprises a small gap separating two electrodes, wherein the gap can be closed as a result of the swelling or stressing of an organic polymer coating on one or both sides of the gap. In certain embodiments, the swelling or stressing is due to the organic polymer reacting with a target analyte.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 14, 2013
    Inventors: William Jay Arora, Karen K. Gleason, George Barbastathis, Wyatt E. Tenhaeff
  • Publication number: 20130089659
    Abstract: Described herein are methods of oxidative chemical vapor deposition of polyselenophene films onto non-conductive surfaces. The methods involve a single, dry step. The polyselenophene films formed by these methods have a lower band gap than the theoretically predicted value. Low-band-gap conjugated polymers are attractive for their applications in many devices including field effect transistors, light-emitting diodes, electrochromic devices, and photovoltaics.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Inventors: Dhiman Bhattacharyya, Karen K. Gleason