Patents by Inventor Karen Simonyan

Karen Simonyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250117652
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. Each output example includes multiple N-bit output values. To generate a given N-bit output value, a first recurrent input comprising the preceding N-bit output value is processed using a recurrent neural network and in accordance with a hidden state to generate a first score distribution. Then, values for the first half of the N bits are selected. A second recurrent input comprising (i) the preceding N-bit output value and (ii) the values for the first half of the N bits are processed using the recurrent neural network and in accordance with the same hidden state to generate a second score distribution. The values for the second half of the N bits of the output value are then selected using the second score distribution.
    Type: Application
    Filed: October 11, 2024
    Publication date: April 10, 2025
    Inventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Erich Konrad Elsen
  • Patent number: 12267518
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating images using neural networks. One of the methods includes generating the output image pixel by pixel from a sequence of pixels taken from the output image, comprising, for each pixel in the output image, generating a respective score distribution over a discrete set of possible color values for each of the plurality of color channels.
    Type: Grant
    Filed: January 8, 2024
    Date of Patent: April 1, 2025
    Assignee: DeepMind Technologies Limited
    Inventors: Aaron Gerard Antonius van den Oord, Nal Emmerich Kalchbrenner, Karen Simonyan
  • Publication number: 20250103856
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for using a neural network to generate a network output that characterizes an entity. In one aspect, a method includes: obtaining a representation of the entity as a set of data element embeddings, obtaining a set of latent embeddings, and processing: (i) the set of data element embeddings, and (ii) the set of latent embeddings, using the neural network to generate the network output. The neural network includes a sequence of neural network blocks including: (i) one or more local cross-attention blocks, and (ii) an output block. Each local cross-attention block partitions the set of latent embeddings and the set of data element embeddings into proper subsets, and updates each proper subset of the set of latent embeddings using attention over only the corresponding proper subset of the set of data element embeddings.
    Type: Application
    Filed: January 30, 2023
    Publication date: March 27, 2025
    Inventors: Joao Carreira, Andrew Coulter Jaegle, Skanda Kumar Koppula, Daniel Zoran, Adrià Recasens Continente, Catalin-Dumitru Ionescu, Olivier Jean Hénaff, Evan Gerard Shelhamer, Relja Arandjelovic, Matthew Botvinick, Oriol Vinyals, Karen Simonyan, Andrew Zisserman
  • Publication number: 20250069705
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing protein structure prediction and protein domain segmentation. In one aspect, a method comprises generating a plurality of predicted structures of a protein, wherein generating a predicted structure of the protein comprises: updating initial values of a plurality of structure parameters of the protein, comprising, at each of a plurality of update iterations: determining a gradient of a quality score for the current values of the structure parameters with respect to the current values of the structure parameters; and updating the current values of the structure parameters using the gradient.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Inventors: Andrew W. Senior, James Kirkpatrick, Laurent Sifre, RIchard Andrew Evans, Hugo Penedones, Chongli Qin, Ruoxi Sun, Karen Simonyan, John Jumper
  • Patent number: 12147899
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network. One of the methods includes receiving an observation characterizing a current state of the environment; determining a target network output for the observation by performing a look ahead search of possible future states of the environment starting from the current state until the environment reaches a possible future state that satisfies one or more termination criteria, wherein the look ahead search is guided by the neural network in accordance with current values of the network parameters; selecting an action to be performed by the agent in response to the observation using the target network output generated by performing the look ahead search; and storing, in an exploration history data store, the target network output in association with the observation for use in updating the current values of the network parameters.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: November 19, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Karen Simonyan, David Silver, Julian Schrittwieser
  • Patent number: 12141691
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. Each output example includes multiple N-bit output values. To generate a given N-bit output value, a first recurrent input comprising the preceding N-bit output value is processed using a recurrent neural network and in accordance with a hidden state to generate a first score distribution. Then, values for the first half of the N bits are selected. A second recurrent input comprising (i) the preceding N-bit output value and (ii) the values for the first half of the N bits are processed using the recurrent neural network and in accordance with the same hidden state to generate a second score distribution. The values for the second half of the N bits of the output value are then selected using the second score distribution.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 12, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Erich Konrad Elsen
  • Publication number: 20240346285
    Abstract: A feedforward generative neural network that generates an output example that includes multiple output samples of a particular type in a single neural network inference. Optionally, the generation may be conditioned on a context input. For example, the feedforward generative neural network may generate a speech waveform that is a verbalization of an input text segment conditioned on linguistic features of the text segment.
    Type: Application
    Filed: March 18, 2024
    Publication date: October 17, 2024
    Inventors: Aaron Gerard Antonius van den Oord, Karen Simonyan, Oriol Vinyals
  • Publication number: 20240249146
    Abstract: A computer-implemented method for automatically determining a neural network architecture represents a neural network architecture as a data structure defining a hierarchical set of directed acyclic graphs in multiple levels. Each graph has an input, an output, and a plurality of nodes between the input and the output. At each level, a corresponding set of the nodes are connected pairwise by directed edges which indicate operations performed on outputs of one node to generate an input to another node. Each level is associated with a corresponding set of operations. At a lowest level, the operations associated with each edge are selected from a set of primitive operations. The method includes repeatedly generating new sample neural network architectures, and evaluating their fitness. The modification is performed by selecting a level, selecting two nodes at that level, and modifying, removing or adding an edge between those nodes according to operations associated with lower levels of the hierarchy.
    Type: Application
    Filed: January 17, 2024
    Publication date: July 25, 2024
    Inventors: Chrisantha Thomas Fernando, Karen Simonyan, Koray Kavukcuoglu, Hanxiao Liu, Oriol Vinyals
  • Publication number: 20240185070
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network. One of the methods includes receiving an observation characterizing a current state of the environment; determining a target network output for the observation by performing a look ahead search of possible future states of the environment starting from the current state until the environment reaches a possible future state that satisfies one or more termination criteria, wherein the look ahead search is guided by the neural network in accordance with current values of the network parameters; selecting an action to be performed by the agent in response to the observation using the target network output generated by performing the look ahead search; and storing, in an exploration history data store, the target network output in association with the observation for use in updating the current values of the network parameters.
    Type: Application
    Filed: December 4, 2023
    Publication date: June 6, 2024
    Inventors: Karen Simonyan, David Silver, Julian Schrittwieser
  • Publication number: 20240146948
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating images using neural networks. One of the methods includes generating the output image pixel by pixel from a sequence of pixels taken from the output image, comprising, for each pixel in the output image, generating a respective score distribution over a discrete set of possible color values for each of the plurality of color channels.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Inventors: Aaron Gerard Antonius van den Oord, Nal Emmerich Kalchbrenner, Karen Simonyan
  • Publication number: 20240135955
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating an output sequence of audio data that comprises a respective audio sample at each of a plurality of time steps. One of the methods includes, for each of the time steps: providing a current sequence of audio data as input to a convolutional subnetwork, wherein the current sequence comprises the respective audio sample at each time step that precedes the time step in the output sequence, and wherein the convolutional subnetwork is configured to process the current sequence of audio data to generate an alternative representation for the time step; and providing the alternative representation for the time step as input to an output layer, wherein the output layer is configured to: process the alternative representation to generate an output that defines a score distribution over a plurality of possible audio samples for the time step.
    Type: Application
    Filed: November 27, 2023
    Publication date: April 25, 2024
    Inventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals
  • Publication number: 20240127586
    Abstract: There is disclosed a computer-implemented method for training a neural network. The method comprises determining a gradient associated with a parameter of the neural network. The method further comprises determining a ratio of a gradient norm to parameter norm and comparing the ratio to a threshold. In response to determining that the ratio exceeds the threshold, the value of the gradient is reduced such that the ratio is equal to or below the threshold. The value of the parameter is updated based upon the reduced gradient value.
    Type: Application
    Filed: February 2, 2022
    Publication date: April 18, 2024
    Inventors: Andrew Brock, Soham De, Samuel Laurence Smith, Karen Simonyan
  • Publication number: 20240127060
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. In one aspect, a system comprises a plurality of actor computing units and a plurality of learner computing units. The actor computing units generate experience tuple trajectories that are used by the learner computing units to update learner action selection neural network parameters using a reinforcement learning technique. The reinforcement learning technique may be an off-policy actor critic reinforcement learning technique.
    Type: Application
    Filed: October 16, 2023
    Publication date: April 18, 2024
    Inventors: Hubert Josef Soyer, Lasse Espeholt, Karen Simonyan, Yotam Doron, Vlad Firoiu, Volodymyr Mnih, Koray Kavukcuoglu, Remi Munos, Thomas Ward, Timothy James Alexander Harley, Iain Robert Dunning
  • Patent number: 11948066
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing sequences using convolutional neural networks. One of the methods includes, for each of the time steps: providing a current sequence of audio data as input to a convolutional subnetwork, wherein the current sequence comprises the respective audio sample at each time step that precedes the time step in the output sequence, and wherein the convolutional subnetwork is configured to process the current sequence of audio data to generate an alternative representation for the time step; and providing the alternative representation for the time step as input to an output layer, wherein the output layer is configured to: process the alternative representation to generate an output that defines a score distribution over a plurality of possible audio samples for the time step.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 2, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals, Lasse Espeholt
  • Publication number: 20240104353
    Abstract: A computer-implemented method for generating an output token sequence from an input token sequence. The method combines a look ahead tree search, such as a Monte Carlo tree search, with a sequence-to-sequence neural network system. The sequence-to-sequence neural network system has a policy output defining a next token probability distribution, and may include a value neural network providing a value output to evaluate a sequence. An initial partial output sequence is extended using the look ahead tree search guided by the policy output and, in implementations, the value output, of the sequence-to-sequence neural network system until a complete output sequence is obtained.
    Type: Application
    Filed: February 8, 2022
    Publication date: March 28, 2024
    Inventors: Rémi Bertrand Francis Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pîslar, Jean-Baptiste Lespiau, Ioannis Antonoglou, Karen Simonyan, David Silver, Oriol Vinyals
  • Patent number: 11934935
    Abstract: A feedforward generative neural network that generates an output example that includes multiple output samples of a particular type in a single neural network inference. Optionally, the generation may be conditioned on a context input. For example, the feedforward generative neural network may generate a speech waveform that is a verbalization of an input text segment conditioned on linguistic features of the text segment.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: March 19, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Aaron Gerard Antonius van den Oord, Karen Simonyan, Oriol Vinyals
  • Patent number: 11907853
    Abstract: A computer-implemented method for automatically determining a neural network architecture represents a neural network architecture as a data structure defining a hierarchical set of directed acyclic graphs in multiple levels. Each graph has an input, an output, and a plurality of nodes between the input and the output. At each level, a corresponding set of the nodes are connected pairwise by directed edges which indicate operations performed on outputs of one node to generate an input to another node. Each level is associated with a corresponding set of operations. At a lowest level, the operations associated with each edge are selected from a set of primitive operations. The method includes repeatedly generating new sample neural network architectures, and evaluating their fitness. The modification is performed by selecting a level, selecting two nodes at that level, and modifying, removing or adding an edge between those nodes according to operations associated with lower levels of the hierarchy.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 20, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Chrisantha Thomas Fernando, Karen Simonyan, Koray Kavukcuoglu, Hanxiao Liu, Oriol Vinyals
  • Patent number: 11875269
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a generator neural network and an encoder neural network. The generator neural network generates, based on a set of latent values, data items which are samples of a distribution. The encoder neural network generates a set of latent values for a respective data item. The training method comprises jointly training the generator neural network, the encoder neural network and a discriminator neural network configured to distinguish between samples generated by the generator network and samples of the distribution which are not generated by the generator network. The discriminator neural network is configured to distinguish by processing, by the discriminator neural network, an input pair comprising a sample part and a latent part.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 16, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Jeffrey Donahue, Karen Simonyan
  • Patent number: 11870947
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating images using neural networks. One of the methods includes generating the output image pixel by pixel from a sequence of pixels taken from the output image, comprising, for each pixel in the output image, generating a respective score distribution over a discrete set of possible color values for each of the plurality of color channels.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: January 9, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Aaron Gerard Antonius van den Oord, Nal Emmerich Kalchbrenner, Karen Simonyan
  • Patent number: 11868894
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. In one aspect, a system comprises a plurality of actor computing units and a plurality of learner computing units. The actor computing units generate experience tuple trajectories that are used by the learner computing units to update learner action selection neural network parameters using a reinforcement learning technique. The reinforcement learning technique may be an off-policy actor critic reinforcement learning technique.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: January 9, 2024
    Assignee: DeepMind Technologies Limited
    Inventors: Hubert Josef Soyer, Lasse Espeholt, Karen Simonyan, Yotam Doron, Vlad Firoiu, Volodymyr Mnih, Koray Kavukcuoglu, Remi Munos, Thomas Ward, Timothy James Alexander Harley, Iain Robert Dunning