Patents by Inventor Karen Simonyan
Karen Simonyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11321542Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language modeling. In one aspect, a system comprises: a masked convolutional decoder neural network that comprises a plurality of masked convolutional neural network layers and is configured to generate a respective probability distribution over a set of possible target embeddings at each of a plurality of time steps; and a modeling engine that is configured to use the respective probability distribution generated by the decoder neural network at each of the plurality of time steps to estimate a probability that a string represented by the target embeddings corresponding to the plurality of time steps belongs to the natural language.Type: GrantFiled: July 13, 2020Date of Patent: May 3, 2022Assignee: DeepMind Technologies LimitedInventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Lasse Espeholt
-
Publication number: 20210407625Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing protein structure prediction. In one aspect, a method comprises generating a distance map for a given protein, wherein the given protein is defined by a sequence of amino acid residues arranged in a structure, wherein the distance map characterizes estimated distances between the amino acid residues in the structure, comprising: generating a plurality of distance map crops, wherein each distance map crop characterizes estimated distances between (i) amino acid residues in each of one or more respective first positions in the sequence and (ii) amino acid residues in each of one or more respective second positions in the sequence in the structure of the protein, wherein the first positions are a proper subset of the sequence; and generating the distance map for the given protein using the plurality of distance map crops.Type: ApplicationFiled: September 16, 2019Publication date: December 30, 2021Inventors: Andrew W. Senior, James Kirkpatrick, Laurent Sifre, Richard Andrew Evans, Hugo Penedones, Chongli Qin, Ruoxi Sun, Karen Simonyan, John Jumper
-
Publication number: 20210383789Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using a generative neural network to convert conditioning text inputs to audio outputs. The generative neural network includes an alignment neural network that is configured to receive a generative input that includes the conditioning text input and to process the generative input to generate an aligned conditioning sequence that comprises a respective feature representation at each of a plurality of first time steps and that is temporally aligned with the audio output.Type: ApplicationFiled: June 4, 2021Publication date: December 9, 2021Inventors: Jeffrey Donahue, Karen Simonyan, Sander Etienne Lea Dieleman, Mikolaj Binkowski, Erich Konrad Elsen
-
Publication number: 20210342670Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing sequences using convolutional neural networks. One of the methods includes, for each of the time steps: providing a current sequence of audio data as input to a convolutional subnetwork, wherein the current sequence comprises the respective audio sample at each time step that precedes the time step in the output sequence, and wherein the convolutional subnetwork is configured to process the current sequence of audio data to generate an alternative representation for the time step; and providing the alternative representation for the time step as input to an output layer, wherein the output layer is configured to: process the alternative representation to generate an output that defines a score distribution over a plurality of possible audio samples for the time step.Type: ApplicationFiled: July 14, 2021Publication date: November 4, 2021Inventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals, Lasse Espeholt
-
Patent number: 11144782Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating video frames using neural networks. One of the methods includes processing a sequence of video frames using an encoder neural network to generate an encoded representation; and generating a predicted next frame pixel by pixel according to a pixel order and a channel order, comprising: for each color channel of each pixel, providing as input to a decoder neural network (i) the encoded representation, (ii) color values for any pixels before the pixel in the pixel order, and (iii) color values for the pixel for any color channels before the color channel in the channel order, wherein the decoder neural network is configured to generate an output defining a score distribution over a plurality of possible color values, and determining the color value for the color channel of the pixel by sampling from the score distribution.Type: GrantFiled: September 29, 2017Date of Patent: October 12, 2021Assignee: DeepMind Technologies LimitedInventors: Nal Emmerich Kalchbrenner, Aaron Gerard Antonius van den Oord, Karen Simonyan
-
Publication number: 20210313008Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing protein structure prediction and protein domain segmentation. In one aspect, a method comprises generating a plurality of predicted structures of a protein, wherein generating a predicted structure of the protein comprises: updating initial values of a plurality of structure parameters of the protein, comprising, at each of a plurality of update iterations: determining a gradient of a quality score for the current values of the structure parameters with respect to the current values of the structure parameters; and updating the current values of the structure parameters using the gradient.Type: ApplicationFiled: September 16, 2019Publication date: October 7, 2021Inventors: Andrew W. Senior, James Kirkpatrick, Laurent Sifre, Richard Andrew Evans, Hugo Penedones, Chongli Qin, Ruoxi Sun, Karen Simonyan, John Jumper
-
Publication number: 20210304847Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing protein structure prediction. In one aspect, a method comprises, at each of one or more iterations: determining an alternative predicted structure of a given protein defined by alternative values of structure parameters; processing, using a geometry neural network, a network input comprising: (i) a representation of a sequence of amino acid residues in the given protein, and (ii) the alternative values of the structure parameters, to generate an output characterizing an alternative geometry score that is an estimate of a similarity measure between the alternative predicted structure and the actual structure of the given protein.Type: ApplicationFiled: September 16, 2019Publication date: September 30, 2021Inventors: Andrew W. Senior, James Kirkpatrick, Laurent Sifre, Richard Andrew Evans, Hugo Penedones, Chongli Qin, Ruoxi Sun, Karen Simonyan, John Jumper
-
Publication number: 20210256375Abstract: A computer-implemented method for training a recurrent neural network using forward propagation rather than back propagation through time. The method is particularly suited to training sparse recurrent neural networks, and may be implemented on specialized hardware.Type: ApplicationFiled: February 5, 2021Publication date: August 19, 2021Inventors: Jacob Lee Menick, Erich Konrad Elsen, Karen Simonyan
-
Patent number: 11080591Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing sequences using convolutional neural networks. One of the methods includes, for each of the time steps: providing a current sequence of audio data as input to a convolutional subnetwork, wherein the current sequence comprises the respective audio sample at each time step that precedes the time step in the output sequence, and wherein the convolutional subnetwork is configured to process the current sequence of audio data to generate an alternative representation for the time step; and providing the alternative representation for the time step as input to an output layer, wherein the output layer is configured to: process the alternative representation to generate an output that defines a score distribution over a plurality of possible audio samples for the time step.Type: GrantFiled: September 6, 2017Date of Patent: August 3, 2021Assignee: DeepMind Technologies LimitedInventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals, Lasse Espeholt
-
Patent number: 11069345Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing speech recognition by generating a neural network output from an audio data input sequence, where the neural network output characterizes words spoken in the audio data input sequence. One of the methods includes, for each of the audio data inputs, providing a current audio data input sequence that comprises the audio data input and the audio data inputs preceding the audio data input in the audio data input sequence to a convolutional subnetwork comprising a plurality of dilated convolutional neural network layers, wherein the convolutional subnetwork is configured to, for each of the plurality of audio data inputs: receive the current audio data input sequence for the audio data input, and process the current audio data input sequence to generate an alternative representation for the audio data input.Type: GrantFiled: December 18, 2019Date of Patent: July 20, 2021Assignee: DeepMind Technologies LimitedInventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals, Lasse Espeholt
-
Publication number: 20210192298Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating images using neural networks. One of the methods includes generating the output image pixel by pixel from a sequence of pixels taken from the output image, comprising, for each pixel in the output image, generating a respective score distribution over a discrete set of possible color values for each of the plurality of color channels.Type: ApplicationFiled: March 10, 2021Publication date: June 24, 2021Inventors: Aaron Gerard Antonius van den Oord, Nal Emmerich Kalchbrenner, Karen Simonyan
-
Publication number: 20210089909Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output audio examples using a generative neural network. One of the methods includes obtaining a training conditioning text input; processing a training generative input comprising the training conditioning text input using a feedforward generative neural network to generate a training audio output; processing the training audio output using each of a plurality of discriminators, wherein the plurality of discriminators comprises one or more conditional discriminators and one or more unconditional discriminators; determining a first combined prediction by combining the respective predictions of the plurality of discriminators; and determining an update to current values of a plurality of generative parameters of the feedforward generative neural network to increase a first error in the first combined prediction.Type: ApplicationFiled: September 25, 2020Publication date: March 25, 2021Inventors: Mikolaj Binkowski, Karen Simonyan, Jeffrey Donahue, Aidan Clark, Sander Etienne Lea Dieleman, Erich Konrad Elsen, Luis Carlos Cobo Rus, Norman Casagrande
-
Patent number: 10949717Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating images using neural networks. One of the methods includes generating the output image pixel by pixel from a sequence of pixels taken from the output image, comprising, for each pixel in the output image, generating a respective score distribution over a discrete set of possible color values for each of the plurality of color channels.Type: GrantFiled: August 9, 2019Date of Patent: March 16, 2021Assignee: DeepMind Technologies LimitedInventors: Aaron Gerard Antonius van den Oord, Nal Emmerich Kalchbrenner, Karen Simonyan
-
Publication number: 20210034909Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using an image processing neural network system that includes a spatial transformer module. One of the methods includes receiving an input feature map derived from the one or more input images, and applying a spatial transformation to the input feature map to generate a transformed feature map, comprising: processing the input feature map to generate spatial transformation parameters for the spatial transformation, and sampling from the input feature map in accordance with the spatial transformation parameters to generate the transformed feature map.Type: ApplicationFiled: August 17, 2020Publication date: February 4, 2021Inventors: Maxwell Elliot Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
-
Publication number: 20210034970Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. In one aspect, a system comprises a plurality of actor computing units and a plurality of learner computing units. The actor computing units generate experience tuple trajectories that are used by the learner computing units to update learner action selection neural network parameters using a reinforcement learning technique. The reinforcement learning technique may be an off-policy actor critic reinforcement learning technique.Type: ApplicationFiled: February 5, 2019Publication date: February 4, 2021Inventors: Hubert Josef Soyer, Lasse Espeholt, Karen Simonyan, Yotam Doron, Vlad Firoiu, Volodymyr Mnih, Koray Kavukcuoglu, Remi Munos, Thomas Ward, Timothy James Alexander Harley, Iain Robert Dunning
-
Publication number: 20210019555Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating video frames using neural networks. One of the methods includes processing a sequence of video frames using an encoder neural network to generate an encoded representation; and generating a predicted next frame pixel by pixel according to a pixel order and a channel order, comprising: for each color channel of each pixel, providing as input to a decoder neural network (i) the encoded representation, (ii) color values for any pixels before the pixel in the pixel order, and (iii) color values for the pixel for any color channels before the color channel in the channel order, wherein the decoder neural network is configured to generate an output defining a score distribution over a plurality of possible color values, and determining the color value for the color channel of the pixel by sampling from the score distribution.Type: ApplicationFiled: September 29, 2017Publication date: January 21, 2021Inventors: Nal Emmerich Kalchbrenner, Aaron Gerard Antonius van den Oord, Karen Simonyan
-
Publication number: 20210012197Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using neural networks having Receive an input vector contiguous sparsity patterns. One of the methods includes storing a first parameter matrix of a neural network having a contiguous sparsity pattern in storage associated with a computing device. The computing device performs an inference pass of the neural network to generate an output vector, including reading, from the storage associated with the computing device, one or more activation values from the input vector, reading, from the storage associated with the computing device, a block of non-zero parameter values, and multiplying each of the one or more activation values by one or more of the block of non-zero parameter values.Type: ApplicationFiled: February 11, 2019Publication date: January 14, 2021Inventors: Karen Simonyan, Nal Emmerich Kalchbrenner, Erich Konrad Elsen
-
Publication number: 20200411032Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating an output sequence of audio data that comprises a respective audio sample at each of a plurality of time steps. One of the methods includes, for each of the time steps: providing a current sequence of audio data as input to a convolutional subnetwork, wherein the current sequence comprises the respective audio sample at each time step that precedes the time step in the output sequence, and wherein the convolutional subnetwork is configured to process the current sequence of audio data to generate an alternative representation for the time step; and providing the alternative representation for the time step as input to an output layer, wherein the output layer is configured to: process the alternative representation to generate an output that defines a score distribution over a plurality of possible audio samples for the time step.Type: ApplicationFiled: September 14, 2020Publication date: December 31, 2020Inventors: Aaron Gerard Antonius van den Oord, Sander Etienne Lea Dieleman, Nal Emmerich Kalchbrenner, Karen Simonyan, Oriol Vinyals
-
Publication number: 20200401874Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating output examples using neural networks. One of the methods includes, at each generation time step, processing a first recurrent input comprising an N-bit output value at the preceding generation time step in the sequence using a recurrent neural network and in accordance with a hidden state to generate a first score distribution; selecting, using the first score distribution, values for the first half of the N bits; processing a second recurrent input comprising (i) the N-bit output value at the preceding generation time step and (ii) the values for the first half of the N bits using the recurrent neural network and in accordance with the same hidden state to generate a second score distribution; and selecting, using the second score distribution, values for the second half of the N bits of the output value.Type: ApplicationFiled: February 11, 2019Publication date: December 24, 2020Inventors: Nal Emmerich Kalchbrenner, Karen Simonyan, Erich Konrad Elsen
-
Publication number: 20200372370Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a generator neural network and an encoder neural network. The generator neural network generates, based on a set of latent values, data items which are samples of a distribution. The encoder neural network generates a set of latent values for a respective data item. The training method comprises jointly training the generator neural network, the encoder neural network and a discriminator neural network configured to distinguish between samples generated by the generator network and samples of the distribution which are not generated by the generator network. The discriminator neural network is configured to distinguish by processing, by the discriminator neural network, an input pair comprising a sample part and a latent part.Type: ApplicationFiled: May 22, 2020Publication date: November 26, 2020Inventors: Jeffrey Donahue, Karen Simonyan