Patents by Inventor Karl A. Deisseroth

Karl A. Deisseroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180284417
    Abstract: The present disclosure provides optical image acquisition methods and devices for microscopy systems that enhance the field-of-view during image acquisition. According to aspects of the present disclosure, the methods and devices for enhancing the field-of-view of a sample during image acquisition in an optical imaging system include directing an incident electromagnetic field through a plurality of polarization-selective gratings, where each of the polarization-selective gratings is configured to apply a discrete amount of angular displacement to the incident electromagnetic field in a direction transverse or axial to the optical system's electromagnetic axis, resulting in an enhanced field-of-view during image acquisition.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Inventors: Karl A. Deisseroth, Sean Quirin
  • Patent number: 10087223
    Abstract: The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 2, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Patent number: 10086012
    Abstract: Provided herein are devices and methods for reversibly controlling memory function in living non-human animals. Some variations of methods for affecting memory function comprise temporarily inhibiting neurons of the hippocampus (e.g., neurons of the dorsal CA1 field of the hippocampus) during the acquisition or retrieval of a memory. Alternatively or additionally, methods for reversibly affecting memory function comprise inhibiting neurons of the amygdala (e.g. basolateral amygdala) and/or neurons of the cingulate cortex (e.g., anterior cingulated cortex). Methods for disrupting the formation and recall of memories by inhibiting excitatory neurons expressing light-activated proteins are disclosed herein. One or more methods for reversibly affecting memory function described herein can be used to evaluate the effectiveness of pharmacological agents in treating PTSD and/or various memory disorders.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 2, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Inbal Goshen
  • Patent number: 10071132
    Abstract: Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 11, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Ofer Yizhar, Lisa Gunaydin, Peter Hegemann, Andre Berndt
  • Publication number: 20180250402
    Abstract: The present disclosure provides variant light-responsive polypeptides, and nucleic acids comprising nucleotide sequences encoding the light-responsive polypeptides. The present disclosure provides methods, devices, and systems for controlling the activity of a cell expressing a variant light-responsive polypeptide of the present disclosure.
    Type: Application
    Filed: September 14, 2016
    Publication date: September 6, 2018
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Andre Berndt, Soo Yeun Lee, Charu Ramakrishnan
  • Patent number: 10064912
    Abstract: Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: September 4, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Ofer Yizhar, Lisa Gunaydin, Peter Hegemann, Andre Berndt
  • Publication number: 20180244737
    Abstract: The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 30, 2018
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Patent number: 10052497
    Abstract: Stimulation of target cells using light, e.g., in vivo, is implemented using a variety of methods and devices. In one example, embodiments involve methods for stimulating target cells using a photosensitive protein that allows the target cells to be stimulated in response to light. In another specific example embodiment, target cells are stimulated using an implantable arrangement. The arrangement includes an electrical light-generation means for generating light and a biological portion. The biological portion has a photosensitive bio-molecular arrangement that responds to the generated light by stimulating target cells in vivo. Other aspects and embodiments are directed to systems and methods for screening chemicals based screening chemicals to identify their effects on cell membrane ion channels and pumps, and to systems and methods for controlling an action potential of neuron (e.g., in in vivo and in vitro environments).
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: August 21, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, David J. Mishelevich, M. Bret Schneider
  • Patent number: 10052383
    Abstract: Aspects of the disclosure include compositions, devices, systems and methods for optogenetic modulation of action potentials in target cells. The subject devices include light-generating devices, control devices, and delivery devices for delivering light-responsive polypeptides, or nucleic acids encoding same, to target cells. The subject compositions and systems include light-activated polypeptides, nucleic acids comprising nucleotide sequences encoding these polypeptides, as well as expression systems that facilitate expression of these polypeptides in target cells. Also provided are methods of using the subject devices and systems to optogenetically manipulate action potentials in target cells, e.g., to treat a neurological or psychiatric condition in a human or animal subject.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 21, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Soo Yeun Lee, Charu Ramakrishnan, Andre Berndt
  • Publication number: 20180228375
    Abstract: Provided herein is a method of optically recording neural activity in one or more regions of a target tissue. Also provided is a method of optically modulating the activity of a neural tissue. Further provided is a system that finds use in performing the present methods.
    Type: Application
    Filed: November 16, 2016
    Publication date: August 16, 2018
    Inventors: Christina K. KIM, Samuel J. YANG, Karl A. DEISSEROTH, Isaac V. KAUVAR
  • Patent number: 10046174
    Abstract: In one example, a system electrically stimulates target cells of a living animal using an elongated structure, a modulation circuit and a light pathway such as provided by an optical fiber arrangement. The elongated structure is for insertion into a narrow passageway in the animal such that an end of the elongated structure is sufficiently near the target cells to deliver stimulation thereto. The modulation circuit is for modulating the target cells while the elongated structure is in the narrow passageway, where the modulation circuit is adapted to deliver viral vectors through the elongated structure for expressing light responsive proteins in the target cells. The light pathway is used for stimulating the target cells by delivering light to the light-responsive proteins in the target cells.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: August 14, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Alexander Aravanis, Feng Zhang, M. Bret Schneider, Jaimie M. Henderson
  • Patent number: 10035027
    Abstract: One embodiment involves modifying neural transmission patterns between neural structures and/or neural regions in a noninvasive manner. In a related exemplary method, sound waves are directed toward a first targeted neural structure and characteristics of the sound waves are controlled at the first target neural structure with respect to characteristics of sound waves at the second target neural structure. In response, neural transmission patterns modified to produce the intended effect (e.g., long-term potentiation and long-term depression of the neural transmission patterns). In a related embodiment, a transducer produces the sound for stimulating the first neural structure and the second neural structure, and an electronically-based control circuit is used to control characteristics of the sound waves as described above to modify the neural transmission patterns between the first and second neural structures.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 31, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, M. Bret Schneider
  • Patent number: 10036758
    Abstract: The present invention provides compositions and methods for light-activated cation channel proteins and their uses within cell membranes and subcellular regions. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-activated cation channels to specific cells or defined cell populations. In particular the invention provides millisecond-timescale temporal control of cation channels using moderate light intensities in cells, cell lines, transgenic animals, and humans. The invention provides for optically generating electrical spikes in nerve cells and other excitable cells useful for driving neuronal networks, drug screening, and therapy.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 31, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Edward S. Boyden
  • Patent number: 10018695
    Abstract: Disclosed herein are systems and methods involving the use of magnetic resonance imaging and optogenetic neural stimulation. Aspects of the disclosure include modifying a target neural cell population in a first region of a brain to express light-responsive molecules. Using a light pulse, the light-responsive molecules in the target neural cell population are stimulated. Multiple regions of the brain are scanned via magnetic resonance imaging. The scans allow for observation of a neural reaction in response to the stimulation in at least one of the multiple regions of the brain.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: July 10, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Jin Hyung Lee
  • Publication number: 20180177401
    Abstract: A method for measuring the activity of one or more excitable cells, such as neurons, in a target tissue is provided. The present method may include measuring the activity of individual, selected excitable cells by projecting one or more three dimensional (3D) multi-focal laser light patterns into a target tissue containing excitable cells adapted to emit cellular electrical activity—sensitive fluorescence, to generate a multiplexed 2D diffraction pattern of fluorescence emitted by the neurons, and resolving the multiplexed 2D diffraction pattern. Also provided herein is a system configured to perform the present method, the system including a microscope configured to project one or more 3D multi-focal laser light patterns into a target tissue using a spatial light modulator and a mirror galvanometer, and a microlens array and an image detector to record individual and multiplexed 2D diffraction patterns of light emitted from the target tissue.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 28, 2018
    Inventors: Samuel Yang, Karl A. Deisseroth, William E. Allen, Isaac V. Kauvar, Aaron S. Andalman
  • Patent number: 9992981
    Abstract: Provided herein are compositions and methods for disrupting at least one reward-related behavior in an individual through the use of light-responsive opsin proteins used to control the polarization state of the cholinergic interneurons of the nucleus accumbens or the striatum.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: June 12, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Ilana Witten
  • Patent number: 9969783
    Abstract: The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 15, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Patent number: 9968652
    Abstract: Provided herein are animals expressing light-responsive opsin proteins in the basal lateral amygdala of the brain and methods for producing the same wherein illumination of the light-responsive opsin proteins causes anxiety in the animal. Also provided herein are methods for alleviating and inducing anxiety in an animal as well as methods for screening for a compound that alleviates anxiety in an animal.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 15, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Kay Tye, Lief Fenno
  • Publication number: 20180056085
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: October 6, 2017
    Publication date: March 1, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Publication number: 20180051058
    Abstract: Provided herein are compositions comprising light-activated chimeric proteins expressed on plasma membranes and methods of using the same to selectively depolarize excitatory or inhibitory neurons.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Karl Deisseroth, Ofer Yizhar, Lief Fenno, Peter Hegemann, Matthias Prigge