Patents by Inventor Karl A. Deisseroth

Karl A. Deisseroth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9693692
    Abstract: Various aspects are directed to systems and methods for assessing neural activity of a neural region having multiple subfields. In certain embodiments, a method includes evoking a cellular electrical response in at least one subfield due to neural activity in the neural region, capturing image data of the electrical response at a level sufficiently detailed in space and time to differentiate between polarization-based events of two respective portions of the subfield, and then assessing neural activity by correlating space and time information, from the captured data, for the two respective portions of the sub-field. Other more specific aspects of the invention involve different preparation and neural stimulation approaches which can vary depending on the application.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 4, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Raag D. Airan, Leslie A. Meltzer
  • Publication number: 20170182191
    Abstract: One embodiment is directed to a method for controllably managing pain in the afferent nervous system of a patient having a targeted tissue structure that has been genetically modified to have light sensitive protein, comprising: providing a light delivery element configured to direct radiation to at least a portion of a targeted tissue structure, a light source configured to provide light to the light delivery element, and a controller operatively coupled to light source, wherein the targeted tissue structure comprises a sensory neuron of the patient; and automatically operating the controller to illuminate the targeted tissue structure with radiation such that a membrane potential of cells comprising the targeted tissue structure is modulated at least in part due to exposure of the light sensitive protein to the radiation.
    Type: Application
    Filed: July 29, 2015
    Publication date: June 29, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Christopher L. Towne, Michael Kaplitt, Scott Delp, Karl Deisseroth, David Angeley, Greg Stahler, Dan Andersen, David C. Lundmark
  • Publication number: 20170160360
    Abstract: Disclosed herein are systems and methods involving the use of magnetic resonance imaging and optogenetic neural stimulation. Aspects of the disclosure include modifying a target neural cell population in a first region of a brain to express light-responsive molecules. Using a light pulse, the light-responsive molecules in the target neural cell population are stimulated. Multiple regions of the brain are scanned via magnetic resonance imaging. The scans allow for observation of a neural reaction in response to the stimulation in at least one of the multiple regions of the brain.
    Type: Application
    Filed: February 6, 2017
    Publication date: June 8, 2017
    Inventors: Karl Deisseroth, Jin Hyung Lee
  • Publication number: 20170157269
    Abstract: Provided herein are compositions and methods for disrupting at least one reward-related behavior in an individual through the use of light-responsive opsin proteins used to control the polarization state of the cholinergic intemeurons of the nucleus accumbens or the striatum.
    Type: Application
    Filed: July 19, 2016
    Publication date: June 8, 2017
    Inventors: Karl Deisseroth, Ilana Witten
  • Patent number: 9662508
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: May 30, 2017
    Assignee: Circuit Therapeutics, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Publication number: 20170143986
    Abstract: Methods, systems and devices are implemented in connection with light-responsive ion channel molecules. One such method is implemented using a light-activated ion channel molecule that responds to a light stimulus. The method includes engineering the light-activated ion channel molecule in a cell; and activating the ion channel molecule, in response to light stimulus that is provided to the ion channel molecule and that has properties that do not activate a ChR2 ion channel, to allow ions to pass through the light-activated ion channel molecule.
    Type: Application
    Filed: June 27, 2016
    Publication date: May 25, 2017
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Patent number: 9658443
    Abstract: Images are detected in a manner that addresses various challenges as discussed herein. As may be consistent with one or more embodiments, aspects are directed to an apparatus having sets of photosensors that detect light rays received at different angles from a specimen via a microlens array, with the light rays detected by each set of photosensors representing an aliased view of the specimen. An output indicative of aliased views of the specimen is provided. Certain embodiments further include a logic circuit that processes the output and generates a deconvolved volume image by combining aliased views of the specimen as detected by the photosensors.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 23, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael J. Broxton, Marc S. Levoy, Noy Cohen, Logan Grosenick, Samuel Yang, Karl A. Deisseroth
  • Patent number: 9649503
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: May 16, 2017
    Assignee: Circuit Therapeutic, Inc.
    Inventors: Scott Delp, Karl Deisseroth, Dan Andersen
  • Patent number: 9615789
    Abstract: Disclosed herein are systems and methods involving the use of magnetic resonance imaging and optogenetic neural stimulation. Aspects of the disclosure include modifying a target neural cell population in a first region of a brain to express light-responsive molecules. Using a light pulse, the light-responsive molecules in the target neural cell population are stimulated. Multiple regions of the brain are scanned via magnetic resonance imaging. The scans allow for observation of a neural reaction in response to the stimulation in at least one of the multiple regions of the brain.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: April 11, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Jin Hyung Lee
  • Publication number: 20170095556
    Abstract: Aspects of the disclosure include compositions, devices, systems and methods for optogenetic modulation of action potentials in target cells. The subject devices include light-generating devices, control devices, and delivery devices for delivering light-responsive polypeptides, or nucleic acids encoding same, to target cells. The subject compositions and systems include light-activated polypeptides, nucleic acids comprising nucleotide sequences encoding these polypeptides, as well as expression systems that facilitate expression of these polypeptides in target cells. Also provided are methods of using the subject devices and systems to optogenetically manipulate action potentials in target cells, e.g., to treat a neurological or psychiatric condition in a human or animal subject.
    Type: Application
    Filed: March 27, 2015
    Publication date: April 6, 2017
    Inventors: Karl A. Deisseroth, Soo Yeun Lee, Charu Ramakrishnan, Andre Berndt
  • Patent number: 9604073
    Abstract: The invention provides polynucleotides and methods for expressing light-activated proteins in animal cells and altering an action potential of the cells by optical stimulation. The invention also provides animal cells and non-human animals comprising cells expressing the light-activated proteins.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: March 28, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Publication number: 20170081388
    Abstract: A variety of methods, devices and compositions are implemented for light-activated molecules. One such method is implemented for generating secondary messengers in a cell. A nucleotide sequence for expressing a chimeric light responsive membrane protein (e.g., rhodopsin) is modified with one or more heterologous receptor subunits {e.g., an adrenergic receptor (alpha1, Beta2)}. The light responsive membrane protein is expresses in a cell for producing a secondary messenger in response to light.
    Type: Application
    Filed: September 7, 2016
    Publication date: March 23, 2017
    Inventors: Karl Deisseroth, Raag D. Airan
  • Publication number: 20170080050
    Abstract: Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).
    Type: Application
    Filed: November 29, 2016
    Publication date: March 23, 2017
    Inventors: Karl Deisseroth, Ofer Yizhar, Lisa Gunaydin, Peter Hegemann, Andre Berndt
  • Publication number: 20170072219
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 16, 2017
    Inventors: Karl A. Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine A. McLeavey Payne
  • Publication number: 20170068086
    Abstract: Methods and devices for conducting high-speed, high-resolution imaging of large intact tissue samples are provided. Aspects of the methods include placing a sample in an optically homogenous sample manipulation component, performing a calibration procedure to align a light sheet and a detection focal plane at a plurality of locations within the sample, and performing an imaging procedure on the sample to collect an image from each location. The collected images are reconstructed to form a three-dimensional image of the sample. Devices for carrying out the steps of the methods are also provided.
    Type: Application
    Filed: May 28, 2015
    Publication date: March 9, 2017
    Inventors: Raju Tomer, Karl A. Deisseroth
  • Publication number: 20170066806
    Abstract: The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.
    Type: Application
    Filed: October 25, 2016
    Publication date: March 9, 2017
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Publication number: 20170065828
    Abstract: A power transmitter is provided that can include a microwave cavity resonant at a desired operating frequency, a hexagonal mesh top to leak evanescent fields out of the cavity, and a plurality of orthogonal monopole feeds with 90 degrees phase differences creating circularly polarized waves. The power transmitter can be configured to transmit energy to a wireless device implanted in an animal passing through the evanescent fields. Implantable devices are also described which can receive wireless energy from the power transmitter and stimulate the animals (e.g., optogenetic or electrical stimulation).
    Type: Application
    Filed: March 25, 2015
    Publication date: March 9, 2017
    Inventors: Ada Shuk Yan POON, John S. Y. HO, Yuji TANABE, Alexander J. YEH, Kate L. MONTGOMERY, Logan GROSENICK, Emily A. FERENCZI, Vivien TSAO, Shrivats Mohan IYER, Scott Lee DELP, Karl DEISSEROTH
  • Publication number: 20170056467
    Abstract: Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).
    Type: Application
    Filed: April 11, 2016
    Publication date: March 2, 2017
    Inventors: Karl Deisseroth, Ofer Yizhar, Lisa Gunaydin, Peter Hegemann, Andre Berndt
  • Patent number: 9522288
    Abstract: Provided herein are compositions comprising lanthanide-doped nanoparticles which upconvert electromagnetic radiation from infrared or near infrared wavelengths into the visible light spectrum. Also provided herein are methods activating light-responsive opsin proteins expressed on plasma membranes of neurons and selectively altering the membrane polarization state of the neurons using the light delivered by the lanthanide-doped nanoparticles.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 20, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Polina Anikeeva
  • Patent number: 9505817
    Abstract: The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: November 29, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru