Patents by Inventor Karthik Ganesan

Karthik Ganesan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10799862
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 13, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10781482
    Abstract: Systems and methods for performing simultaneous nucleic acid amplification and detection. The systems and methods comprise methods for managing a plurality of protocols in conjunction with directing a sensor array across each of a plurality of reaction chambers. In certain embodiments, the protocols comprise thermocycling profiles and the methods may introduce offsets and duration extensions into the thermocycling profiles to achieve more efficient detection behavior.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 22, 2020
    Assignee: Becton, Dickinson and Company
    Inventors: Thomas Catalino Gubatayao, Kalyan Handique, Karthik Ganesan, Daniel M. Drummond
  • Patent number: 10731201
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: August 4, 2020
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Publication number: 20200215536
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 9, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200164363
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 28, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200156059
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 21, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200156060
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 21, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200139363
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200132592
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Application
    Filed: January 2, 2020
    Publication date: April 30, 2020
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10619191
    Abstract: A microfluidic processing device includes a substrate defining a microfluidic network. The substrate is in thermal communication with a plurality of N independently controllable components and a plurality of input output contacts for connecting the substrate to an external controller. Each component has at least two terminals. Each terminal is in electrical communication with at least one contact. The number of contacts required to independently control the N components is substantially less than the total number of terminals. Upon actuation, the components typically heat a portion of the microfluidic network and/or sense a temperature thereof.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 14, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Karthik Ganesan, Kalyan Handique
  • Publication number: 20200112554
    Abstract: Techniques for multifactor authentication as a network service are disclosed. In some embodiments, a system, process, and/or computer program product for multifactor authentication as a network service includes monitoring a session at a firewall, applying an authentication profile based on the new session, and performing an action based on the authentication profile.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 9, 2020
    Inventors: Ashwath Sreenivasa Murthy, Karthik Ganesan, Prabhakar M. V. B. R. Mangam, Shriram S. Jandhyala, Martin Walter
  • Patent number: 10571935
    Abstract: The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 25, 2020
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Karthik Ganesan, Sundaresh N. Brahmasandra
  • Patent number: 10564090
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: February 18, 2020
    Assignee: Celsee Diagnostics, Inc.
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10547600
    Abstract: Techniques for multifactor authentication as a network service are disclosed. In some embodiments, a system, process, and/or computer program product for multifactor authentication as a network service includes monitoring a session at a firewall, applying an authentication profile based on the new session, and performing an action based on the authentication profile.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 28, 2020
    Assignee: Palo Alto Networks, Inc.
    Inventors: Ashwath Sreenivasa Murthy, Karthik Ganesan, Prabhakar M V B R Mangam, Shriram S. Jandhyala, Martin Walter
  • Publication number: 20200010872
    Abstract: A microfluidic processing device includes a substrate defining a microfluidic network. The substrate is in thermal communication with a plurality of N independently controllable components and a plurality of input output contacts for connecting the substrate to an external controller. Each component has at least two terminals. Each terminal is in electrical communication with at least one contact. The number of contacts required to independently control the N components is substantially less than the total number of terminals. Upon actuation, the components typically heat a portion of the microfluidic network and/or sense a temperature thereof.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 9, 2020
    Inventors: Karthik Ganesan, Kalyan Handique
  • Publication number: 20190353579
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Application
    Filed: August 2, 2019
    Publication date: November 21, 2019
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10466160
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 5, 2019
    Assignee: Celsee Diagnostics, Inc.
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10351901
    Abstract: A microfluidic processing device includes a substrate defining a microfluidic network. The substrate is in thermal communication with a plurality of N independently controllable components and a plurality of input output contacts for connecting the substrate to an external controller. Each component has at least two terminals. Each terminal is in electrical communication with at least one contact. The number of contacts required to independently control the N components is substantially less than the total number of terminals. Upon actuation, the components typically heat a portion of the microfluidic network and/or sense a temperature thereof.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 16, 2019
    Assignee: HandyLab, Inc.
    Inventors: Karthik Ganesan, Kalyan Handique
  • Publication number: 20180260323
    Abstract: A heterogeneous memory system is implemented using a low-latency near memory (NM) and a high-latency far memory (FM). Pages in the memory system include NM blocks stored in the NM and FM blocks stored in the FM. A page is assigned to a region in the memory system based on the proportion of NM blocks in the page. When accessing a block, the block address is used to determine a region of the memory system, and a block offset is used to determine whether the block is stored in NM or FM. The memory system may observe memory accesses to determine the access statistics of the page and the block. Based on a page's hotness and access density, the page may be migrated to a different region. Based on a block's hotness, the block may be migrated between NM and FM allocated to the page.
    Type: Application
    Filed: December 22, 2017
    Publication date: September 13, 2018
    Inventors: Lizy John, Jee Ho Ryoo, Hung-Ming Hsu, Karthik Ganesan
  • Publication number: 20180135102
    Abstract: Systems and methods for performing simultaneous nucleic acid amplification and detection. The systems and methods comprise methods for managing a plurality of protocols in conjunction with directing a sensor array across each of a plurality of reaction chambers. In certain embodiments, the protocols comprise thermocycling profiles and the methods may introduce offsets and duration extensions into the thermocycling profiles to achieve more efficient detection behavior.
    Type: Application
    Filed: September 15, 2017
    Publication date: May 17, 2018
    Inventors: Thomas Catalino Gubatayao, Kalyan Handique, Karthik Ganesan, Daniel M. Drummond