Patents by Inventor Kartik Ramaswamy

Kartik Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10811226
    Abstract: A plasma reactor has an overhead inductively coupled plasma source with two coil antennas and symmetric and radial RF feeds and cylindrical RF shielding around the symmetric and radial RF feeds. The radial RF feeds are symmetrically fed to the plasma source.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 20, 2020
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Kenneth S. Collins, Richard Fovell, Jason A. Kenney, Kartik Ramaswamy, Shahid Rauf
  • Publication number: 20200321186
    Abstract: Embodiments described herein relate to apparatus and methods for performing electron beam reactive plasma etching. In one embodiment, an apparatus for performing EBRPE processes includes an electrode formed from a material having a high secondary electron emission coefficient. The electrode has an electron emitting surface disposed at a nonparallel angle relative to a major axis of a substrate assembly. The EBRPE apparatus may further comprise a capacitive or inductive coupled plasma generator. In another embodiment, methods for etching a substrate include generating a plasma and bombarding an electrode with ions from the plasma to cause the electrode to emit electrons. The electrons are accelerated toward a substrate to induce directional etching of the substrate. During the EBPRE process, the substrate or electrode is actuated through a process volume during the etching.
    Type: Application
    Filed: April 2, 2019
    Publication date: October 8, 2020
    Inventors: John M. WHITE, Yang YANG, Kartik RAMASWAMY, Manivannan THOTHADRI, Yue GUO
  • Publication number: 20200312630
    Abstract: A plasma reactor includes a processing chamber having a lower processing portion having an axis of symmetry and an array of cavities extending upwardly from the lower processing portion. A gas distributor couples plural gas sources to a plurality of gas inlets of the cavities, and the gas distributor includes a plurality of valves with each valve selectively connecting a respective gas inlet to one of the plural gas sources. Power is applied by an array of conductors that includes a respective conductor for each respective cavity with each conductor adjacent and surrounding a cavity. A power distributor couples a power source and the array of conductors, and the power distributor includes a plurality of switches with a switch for each respective conductor.
    Type: Application
    Filed: March 24, 2020
    Publication date: October 1, 2020
    Inventors: Kartik Ramaswamy, Lawrence Wong, Steven Lane, Yang Yang, Srinivas D. Nemani, Praburam Gopalraja
  • Patent number: 10790153
    Abstract: Embodiments described herein relate to apparatus and methods for performing electron beam etching process. In one embodiment, a method of etching a substrate includes delivering a process gas to a process volume of a process chamber, applying a RF power to an electrode formed from a high secondary electron emission coefficient material disposed in the process volume, generating a plasma comprising ions in the process volume, bombarding the electrode with the ions to cause the electrode to emit electrons and form an electron beam, applying a negative DC power to the electrode, accelerating electrons emitted from the bombarded electrode toward a substrate disposed in the process chamber, and etching the substrate with the accelerated ions.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 29, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Yue Guo, Yang Yang, Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Gonzalo Monroy, Lucy Zhiping Chen
  • Patent number: 10784132
    Abstract: A method and apparatus for de-chucking a workpiece is described that uses a swing voltage sequence. One example pertains to a method that includes applying a mechanical force from an electrostatic chuck against the back side of a workpiece that is electrostatically clamped to the chuck, applying a sequence of voltage pulses with a same polarity to the electrodes, each pulse of the sequence having a lower voltage than the preceding pulse, each pulse of the sequence having a lower voltage than the preceding pulse, and determining whether the workpiece is released from the chuck after the sequence of additional voltage pulses and if the workpiece is not released then repeating applying the sequence of voltage pulses.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: September 22, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Haitao Wang, Wonseok Lee, Sergio Fukuda Shoji, Chunlei Zhang, Kartik Ramaswamy
  • Patent number: 10784085
    Abstract: An external magnetic filter to trap electrons surrounds a reactor chamber and has multiple magnets arranged in a circle, the magnetic orientation of each individual magnet being rotated relative to the orientation of the adjacent individual magnet by a difference angle that is a function of the arc subtended by the individual magnet.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: September 22, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Yang Yang, Lawrence Wong
  • Patent number: 10770270
    Abstract: An electrostatic chuck is described to carry a workpiece for processing such as high power plasma processing. In embodiments, the chuck includes a top plate to carry the workpiece, the top plate having an electrode to grip the workpiece, a cooling plate under the top plate to cool the top plate, a gas hole through the cooling plate and the top plate to feed a gas to the workpiece through the top plate, and an aperture-reducing plug in the cooling plate gas hole to conduct gas flow through the hole.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jaeyong Cho, Haitao Wang, Vijay D. Parkhe, Kartik Ramaswamy, Chunlei Zhang
  • Patent number: 10770267
    Abstract: Methods and apparatus for matching an impedance of a process chamber with an impedance of an RF power source. In some embodiments, a method comprises dynamically matching a load impedance of the process chamber with an impedance matching circuit coupled between an RF power source and the process chamber, the impedance matching circuit configured to compensate for changes in the load impedance to match an impedance of the RF power source over a wide range of load impedances; filtering power feeding back from the process chamber with a first filter positioned between the matching circuit and the process chamber, the first filter configured as a wide bandpass filter; and filtering residual signals with a second filter positioned between the matching circuit and the RF power source, the second filter configured as a low pass filter.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: September 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Smbat Kartashyan, David Totedo, Kartik Ramaswamy, Jay Merkel, Omid Amirkiai
  • Patent number: 10745807
    Abstract: Embodiments of the present disclosure relate to a showerhead assembly for use in a processing chamber. The showerhead assembly includes a porous insert disposed in a space defined between a gas distribution plate and a base plate to moderate the corrosive radicals resulting from plasma ignition to reduce particle issues and metal contamination in the chamber. The porous insert is a conductive material, such as metal, used to reduce the gap electrical field strength, or may be a dielectric material such as ceramic, polytetrafluoroethylene, polyamide-imide, or other materials with a low dielectric loss and high electrical field strength under conditions of high frequency and strong electric fields. As such, the electrical breakdown threshold is enhanced. The porous insert may reduce and/or eliminate showerhead backside plasma ignition and may include multiple concentric narrow rings that cover gas holes of the gas distribution plate.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Haitao Wang, Hamid Noorbakhsh, Chunlei Zhang, Sergio Fukuda Shoji, Kartik Ramaswamy, Roland Smith, Brad L. Mays
  • Patent number: 10718719
    Abstract: Embodiments include devices and methods for detecting particles in a wafer processing tool. In an embodiment, a particle monitoring device having a wafer form factor includes several micro sensors capable of operating in all pressure regimes, e.g., under vacuum conditions. The particle monitoring device may include a clock to output a time value when a parameter of a micro sensor changes in response to receiving a particle within a chamber of the wafer processing tool. A location of the micro sensor or the time value may be used to determine a source of the particle. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Leonard Tedeschi, Kartik Ramaswamy
  • Patent number: 10707086
    Abstract: Embodiments described herein relate to apparatus and methods for performing electron beam reactive plasma etching (EBRPE). In one embodiment, an apparatus for performing EBRPE processes includes an electrode formed from a material having a high secondary electron emission coefficient. In another embodiment, methods for etching a substrate include generating a plasma and bombarding an electrode with ions from the plasma to cause the electrode to emit electrons. The electrons are accelerated toward a substrate to induce etching of the substrate.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Yang Yang, Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Gonzalo Monroy, Lucy Zhiping Chen, Yue Guo
  • Publication number: 20200192027
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 18, 2020
    Inventors: Kartik RAMASWAMY, Yang YANG, Manivannan THOTHADRI, Chien-An CHEN, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20200194218
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 18, 2020
    Inventors: Ludovic GODET, Rutger Meyer Timmerman Thijssen, Kartik Ramaswamy, Yang Yang, Manivannan Thothadri, Chien-An Chen
  • Publication number: 20200185192
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Patent number: 10672591
    Abstract: Embodiments of an apparatus for removing particles from a twin chamber processing system are provided herein. In some embodiments, an apparatus for removing particles from a twin chamber processing system includes a remote plasma system; and a plurality of conduits fluidly coupling the remote plasma system to each process chamber of a twin chamber processing system to provide a plasma to an exhaust volume of each process chamber, wherein each conduit of the plurality of conduits has an outlet disposed along a boundary of the respective exhaust volumes.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: June 2, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew Nguyen, Tom K. Cho, Kartik Ramaswamy, Yogananda Sarode Vishwanath
  • Patent number: 10656194
    Abstract: Methods and apparatus for measurement of a surface charge profile of an electrostatic chuck are provided herein. In some embodiments, an apparatus for measurement of a surface charge profile of an electrostatic chuck includes: an electrostatic charge sensor disposed on a substrate to obtain data indicative of an electrostatic charge on an electrostatic chuck; and a transmitter disposed on the substrate and having an input in communication with an output of the electrostatic charge sensor to transmit the data.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: May 19, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Haitao Wang, Lawrence Wong, Kartik Ramaswamy, Chunlei Zhang
  • Patent number: 10615006
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10615004
    Abstract: Embodiments of the disclosure provide a plasma source assembly and process chamber design that can be used for any number of substrate processing techniques. The plasma source may include a plurality of discrete electrodes that are integrated with a reference electrode and a gas feed structure to generate a uniform, stable and repeatable plasma during processing. The plurality of discrete electrodes include an array of electrodes that can be biased separately, in groups or all in unison, relative to a reference electrode. The plurality of discrete electrodes may include a plurality of conductive rods that are positioned to generate a plasma within a processing region of a process chamber. The plurality of discrete electrodes is provided RF power from standing or traveling waves imposed on a power distribution element to which the electrodes are connected.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kenneth S. Collins, Michael R. Rice, Kartik Ramaswamy, James D. Carducci, Yue Guo, Olga Regelman
  • Publication number: 20200075290
    Abstract: Methods for RF pulse reflection reduction are provided herein. In some embodiments, a method for processing a substrate in a plasma enhanced substrate processing system using multi-level pulsed RF power includes; receiving a process recipe for processing the substrate that includes a plurality of pulsed RF power waveforms from a plurality of RF generators, using the master RF generator to generate a transistor-transistor logic (TTL) signal having a base frequency and a first duty cycle, setting a multiplier for each RF generator, dividing the first duty cycle into a high level interval and a low level interval, determining a frequency command set for each RF generator and sending the frequency command set to each RF generator, wherein the frequency command set includes a frequency set point for each RF generator; and providing the plurality of pulsed RF power waveforms from the plurality of RF generators to a process chamber.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 5, 2020
    Inventors: KATSUMASA KAWASAKI, JUSTIN PHI, KARTIK RAMASWAMY, SERGIO FUKUDA SHOJI, DAISUKE SHIMIZU
  • Patent number: 10580620
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins