Patents by Inventor Katherina Babich

Katherina Babich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11094805
    Abstract: Structures for a heterojunction bipolar transistor and methods of forming a structure for a heterojunction bipolar transistor. A first portion of a first semiconductor layer defines an emitter, a first portion of a second semiconductor layer defines a collector, and a base includes respective second portions of the first and second semiconductor layers that are laterally positioned between the first portion of the first semiconductor layer and the first portion of the second semiconductor layer. The first portion of the first semiconductor layer has a first thickness, and the first portion of the second semiconductor layer has a second thickness that is greater than the first thickness. The first portion and the second portion of the first semiconductor layer adjoin at a first junction having the first thickness. The first portion and the second portion of the second semiconductor layer adjoin at a second junction having the second thickness.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: August 17, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Alexander Derrickson, Edmund K. Banghart, Alexander Martin, Ryan Sporer, Jagar Singh, Katherina Babich, George R. Mulfinger
  • Publication number: 20210226044
    Abstract: Structures for a heterojunction bipolar transistor and methods of forming a structure for a heterojunction bipolar transistor. A first portion of a first semiconductor layer defines an emitter, a first portion of a second semiconductor layer defines a collector, and a base includes respective second portions of the first and second semiconductor layers that are laterally positioned between the first portion of the first semiconductor layer and the first portion of the second semiconductor layer. The first portion of the first semiconductor layer has a first thickness, and the first portion of the second semiconductor layer has a second thickness that is greater than the first thickness. The first portion and the second portion of the first semiconductor layer adjoin at a first junction having the first thickness. The first portion and the second portion of the second semiconductor layer adjoin at a second junction having the second thickness.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: Alexander Derrickson, Edmund K. Banghart, Alexander Martin, Ryan Sporer, Jagar Singh, Katherina Babich, George R. Mulfinger
  • Patent number: 10580684
    Abstract: A method of forming an SDB that is self-aligned to a dummy gate and the resulting device are provided. Embodiments include providing a plurality of gates over a SOI layer above a BOX layer, each gate having a pair of sidewall spacers and a cap layer, and a raised S/D epitaxial regions over the SOI layer between each gate; removing a gate of the plurality of gates and a portion of the SOI layer exposed by the removing of the gate, and a portion of the BOX layer underneath the SOI layer, the removing forms a trench; forming a liner of a first dielectric material over and along sidewalls of the trench; and filling the trench with a second dielectric material.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 3, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jin Wallner, Katherina Babich, Sunil Kumar Singh
  • Publication number: 20190318955
    Abstract: A method of forming an SDB that is self-aligned to a dummy gate and the resulting device are provided. Embodiments include providing a plurality of gates over a SOI layer above a BOX layer, each gate having a pair of sidewall spacers and a cap layer, and a raised S/D epitaxial regions over the SOI layer between each gate; removing a gate of the plurality of gates and a portion of the SOI layer exposed by the removing of the gate, and a portion of the BOX layer underneath the SOI layer, the removing forms a trench; forming a liner of a first dielectric material over and along sidewalls of the trench; and filling the trench with a second dielectric material.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Inventors: Jin WALLNER, Katherina BABICH, Sunil Kumar SINGH
  • Patent number: 9059000
    Abstract: Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Kenneth T. Settlemyer, Jr., Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens, Dirk Pfeiffer, Timothy Dalton, Katherina Babich, Arpan P. Mahorowala, Harald Okorn-Schmidt
  • Patent number: 8895352
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Patent number: 8816333
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Publication number: 20130224944
    Abstract: Methods for fabricating integrated circuits using tailored chamfered gate liner profiles are provided. In an exemplary embodiment, a method for fabricating an integrated circuit includes forming a dummy gate electrode overlying a semiconductor substrate and forming a liner on sidewalls of the dummy gate electrode. A dielectric material is deposited overlying the dummy gate electrode, the liner, and the substrate. The dummy gate electrode is exposed by chemical mechanical planarization. A portion of the dummy gate electrode is removed and the liner is isotropically etched such that it has a chamfered surface. A remainder of the dummy gate electrode is removed to form an opening that is filled with a metal.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Puneet Khanna, Dae-han Choi, Katherina Babich, Catherine Labelle
  • Publication number: 20120235119
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Patent number: 7998871
    Abstract: Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Todd C. Bailey, Richard A. Conti, Ryan P. Deschner
  • Publication number: 20100301336
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Patent number: 7651947
    Abstract: Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Todd C. Bailey, Richard A. Conti, Ryan P. Deschner
  • Patent number: 7648820
    Abstract: Antireflective hardmask compositions and techniques for the use of antireflective hardmask compositions for processing of semiconductor devices are provided. In one aspect of the invention, an antireflective hardmask layer for lithography is provided. The antireflective hardmask layer comprises a carbosilane polymer backbone comprising at least one chromophore moiety and at least one transparent moiety; and a crosslinking component. In another aspect of the invention, a method for processing a semiconductor device is provided. The method comprises the steps of: providing a material layer on a substrate; forming an antireflective hardmask layer over the material layer. The antireflective hardmask layer comprises a carbosilane polymer backbone comprising at least one chromophore moiety and at least one transparent moiety; and a crosslinking component.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Elbert Huang, Arpan P. Mahorowala, David R. Medeiros, Dirk Pfeiffer, Karen Temple
  • Patent number: 7611758
    Abstract: A method and apparatus for improving the post-development photoresist profile on a deposited dielectric film. The method includes depositing a TERA film having tunable optical and etch resistant properties on a substrate using a plasma-enhanced chemical vapor deposition process and post processing the TERA film using a plasma process. The apparatus includes a chamber having an upper electrode coupled to a first RF source and a substrate holder coupled to a second RF source; and a showerhead for providing multiple precursors and process gasses.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: November 3, 2009
    Assignees: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: Noriaki Fukiage, Katherina Babich
  • Patent number: 7497959
    Abstract: Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: March 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Kenneth T. Settlemyer, Jr., Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens, Dirk Pfeiffer, Timothy Dalton, Katherina Babich, Arpan P. Mahorowala, Harald Okorn-Schmidt
  • Publication number: 20090004869
    Abstract: Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 1, 2009
    Inventors: Katherina Babich, Todd C. Bailey, Richard A. Conti, Ryan P. Deschner
  • Publication number: 20080286545
    Abstract: Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
    Type: Application
    Filed: June 25, 2008
    Publication date: November 20, 2008
    Inventors: Katherina Babich, Todd C. Bailey, Richard A. Conti, Ryan P. Deschner
  • Publication number: 20080261128
    Abstract: Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 23, 2008
    Inventors: Deok-kee Kim, Kenneth T. Settlemyer, Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens, Dirk Pfeiffer, Thimothy Dalton, Katherina Babich, Arpan P. Mahorowala, Harald Okorn-Schmidt
  • Publication number: 20080093640
    Abstract: A method that allows for uniform, simultaneous epitaxial growth of a semiconductor material on dissimilarly doped semiconductor surfaces (n-type and p-type) that does not impart substrate thinning via a novel surface preparation scheme, as well as a structure that results from the implementation of this scheme into the process integration flow for integrated circuitry are provided. The method of the present invention can by used for the selective or nonselective epitaxial growth of semiconductor material from the dissimilar surfaces.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 24, 2008
    Applicant: International Business Machines Corporation
    Inventors: Katherina Babich, Bruce Doris, David Medeiros, Devendra Sadana
  • Publication number: 20070275563
    Abstract: Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherina Babich, Todd C. Bailey, Richard A. Conti, Ryan P. Deschner