Patents by Inventor Katherine L. Saenger

Katherine L. Saenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9368407
    Abstract: A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: June 14, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Devendra K. Sadana, Katherine L. Saenger, Kuen-Ting Shiu
  • Publication number: 20160163553
    Abstract: Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Ibrahim Alhomoudi
  • Patent number: 9324564
    Abstract: Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: April 26, 2016
    Assignees: International Business Machines Corporation, KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Ibrahim Alhomoudi, Stephen W. Bedell, Cheng-Wei Cheng, Keith E. Fogel, Devendra K. Sadana, Katherine L. Saenger, Norma E. Sosa, Ning Li
  • Publication number: 20160087577
    Abstract: A solar cell includes a p-type semiconductor substrate including a plurality of thin absorption regions and a plurality of thick absorption regions. The plurality of thin absorption regions and the plurality of thick absorption regions are coplanar on a bottom side thereof. An n-type semiconductor layer is disposed over a top side of the p-type semiconductor substrate. The n-type semiconductor layer has a substantially uniform thickness. Metallurgy is disposed on top of the n-type semiconductor layer. The plurality of thin absorption regions are sufficiently thin to render the semiconductor substrate flexible.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: ABDULRAHMAN ALBADRI, STEPHEN BEDELL, NING LI, DEVENDRA SADANA, KATHERINE L. SAENGER, ABDELMAJID SALHI, DAVOOD SHAHRJERDI
  • Patent number: 9275867
    Abstract: Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 1, 2016
    Assignees: International Business Machines Corporation, King Abdulaziz City for Science and Technology
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Ibrahim Alhomoudi
  • Patent number: 9236271
    Abstract: A pulsed laser-initiated exfoliation method for patterning a Group III-nitride film on a growth substrate is provided. This method includes providing a Group III-nitride film a growth substrate, wherein a growth substrate/Group III-nitride film interface is present between the Group III-nitride film and the growth substrate. Next, a laser is selected that provides radiation at a wavelength at which the Group III-nitride film is transparent and the growth substrate is absorbing. The interface is then irradiated with pulsed laser radiation from the Group III-nitride film side of the growth substrate/Group III-nitride film interface to exfoliate a region of the Group III-nitride from the growth substrate. A method for transfer a Group-III nitride film from a growth substrate to a handle substrate is also provided.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Can Bayram, Stephen W. Bedell, Devendra K. Sadana, Katherine L. Saenger
  • Publication number: 20150325443
    Abstract: Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 12, 2015
    Inventors: Ibrahim Alhomoudi, Stephen W. Bedell, Cheng-Wei Cheng, Keith E. Fogel, Devendra K. Sadana, Katherine L. Saenger, Norma E. Sosa, Ning Li
  • Publication number: 20150279696
    Abstract: The present invention provides ART techniques with reduced LER. In one aspect, a method of ART with reduced LER is provided which includes the steps of: providing a silicon layer separated from a substrate by a dielectric layer; patterning one or more ART lines in the silicon layer selective to the dielectric layer; contacting the silicon layer with an inert gas at a temperature, pressure and for a duration sufficient to cause re-distribution of silicon along sidewalls of the ART lines patterned in the silicon layer; using the resulting smoothened, patterned silicon layer to pattern ART trenches in the dielectric layer; and epitaxially growing a semiconductor material up from the substrate at the bottom of each of the ART trenches, to form fins in the ART trenches.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy Cohen, Katherine L. Saenger, Kuen-Ting Shiu
  • Patent number: 9112068
    Abstract: Techniques and structures for laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation. A structure includes a crystalline semiconductor having at least one surface, a doped crystalline region disposed in at least one selected area of the semiconductor surface, and a dopant-containing amorphous silicon layer stack containing a same dopant as present in the doped crystalline region on at least a portion of the semiconductor surface outside the selected area, wherein the dopant-containing amorphous silicon layer stack passivates the portion of the semiconductor surface on which it is disposed.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 18, 2015
    Assignee: International Business Machines Corporation
    Inventors: Deborah A. Neumayer, Katherine L. Saenger
  • Publication number: 20150228487
    Abstract: Techniques and structures for laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation are provided. An example method includes forming a dopant-containing amorphous silicon layer stack on at least one portion of a surface of a crystalline semiconductor layer; and irradiating a selected area of the dopant-containing amorphous silicon layer stack, wherein the selected area of the dopant-containing amorphous silicon layer stack interacts with an upper portion of the underlying crystalline semiconductor layer to form a doped, conductive crystalline region, and each non-selected area of the dopant-containing amorphous silicon layer stack remains intact on the at least one portion of the surface of the crystalline semiconductor layer.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 13, 2015
    Inventors: Deborah A. Neumayer, Katherine L. Saenger
  • Patent number: 9079269
    Abstract: Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Keith E. Fogel, Devendra K. Sadana, Katherine L. Saenger, Norma E. Sosa Cortes, Ning Li, Ibrahim Alhomoudi
  • Publication number: 20150140830
    Abstract: Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
    Type: Application
    Filed: December 11, 2014
    Publication date: May 21, 2015
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Ibrahim Alhomoudi
  • Publication number: 20150140831
    Abstract: A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack.
    Type: Application
    Filed: January 8, 2015
    Publication date: May 21, 2015
    Inventors: STEPHEN W. BEDELL, CHENG-WEI CHENG, DEVENDRA K. SADANA, KATHERINE L. SAENGER, KUEN-TING SHIU
  • Publication number: 20150060856
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Christy S. TYBERG, Katherine L. SAENGER, Jack O. CHU, Harold J. HOVEL, Robert L. WISNIEFF, Kerry BERNSTEIN, Stephen W. BEDELL
  • Patent number: 8969992
    Abstract: An autonomous integrated circuit (IC) includes a solar cell formed on a bottom substrate of a silicon-on-insulator (SOI) substrate as a handle substrate; an insulating layer of the SOI substrate located on top of the solar cell; and a device layer formed on a top semiconductor layer of the SOI substrate located on top of the insulating layer, wherein a top contact of the device layer is electrically connected to a bottom contact of the solar cell such that the solar cell is enabled to power the device layer.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Norma E. Sosa Cortes, Wilfried E. Haensch, Steven J. Koester, Devendra K. Sadana, Katherine L. Saenger, Ghavam Shahidi, Davood Shahrjerdi
  • Patent number: 8946054
    Abstract: A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Devendra K. Sadana, Katherine L. Saenger, Kuen-Ting Shiu
  • Patent number: 8933456
    Abstract: A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Daniel A. Inns, Jeehwan Kim, Devendra K. Sadana, Katherine L. Saenger
  • Patent number: 8927057
    Abstract: A method for forming a single, few-layer, or multi-layer graphene and structure is described incorporating selecting a substrate having a buried layer of carbon underneath a metal layer, providing an ambient and providing a heat treatment to pass carbon through the metal layer to form a graphene layer on the metal layer surface or incorporating a metal-carbon layer which is heated to segregate carbon in the form of graphene to the surface or chemically reacting the metal in the metal-carbon layer with a substrate containing Si driving the carbon to the surface whereby graphene is formed.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ageeth A. Bol, Roy A. Carruthers, Jack O. Chu, Alfred Grill, Christian Lavoie, Katherine L. Saenger, James C. Tsang
  • Publication number: 20140374702
    Abstract: Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: JACK O. CHU, CHRISTOS D. DIMITRAKOPOULOS, ALFRED GRILL, TIMOTHY J. McARDLE, DIRK PFEIFFER, KATHERINE L. SAENGER, ROBERT L. WISNIEFF
  • Patent number: 8916450
    Abstract: Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: December 23, 2014
    Assignees: International Business Machines Corporation, King Abdulaziz City for Science and Technology
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Ibrahim Alhomoudi