Patents by Inventor Katherine L. Saenger

Katherine L. Saenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8878055
    Abstract: A photovoltaic device and method include a substrate layer having a plurality of structures including peaks and troughs formed therein. A continuous photovoltaic stack is conformally formed over the substrate layer and extends over the peaks and troughs. The photovoltaic stack has a thickness of less than one micron and is configured to transduce incident radiation into current flow.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, William S. Graham, Jeehwan Kim, Harold J. Hovel, Devendra K. Sadana, Katherine L. Saenger
  • Publication number: 20140315389
    Abstract: A method for separating a layer for transfer includes forming a crack guiding layer on a substrate and forming a device layer on the crack-guiding layer. The crack guiding layer is weakened by exposing the crack-guiding layer to a gas which reduces adherence at interfaces adjacent to the crack guiding layer. A stress inducing layer is formed on the device layer to assist in initiating a crack through the crack guiding layer and/or the interfaces. The device layer is removed from the substrate by propagating the crack.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Devendra K. Sadana, Katherine L. Saenger, Kuen-Ting Shiu
  • Patent number: 8828762
    Abstract: Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Christos D. DiMitrakopoulos, Alfred Grill, Timothy J. McArdle, Dirk Pfeiffer, Katherine L. Saenger, Robert L. Wisnieff
  • Patent number: 8823143
    Abstract: Methods for electrodepositing germanium on various semiconductor substrates such as Si, Ge, SiGe, and GaAs are provided. The electrodeposited germanium can be formed as a blanket or patterned film, and may be crystallized by solid phase epitaxy to the orientation of the underlying semiconductor substrate by subsequent annealing. These plated germanium layers may be used as the channel regions of high-mobility channel field effect transistors (FETs) in complementary metal oxide semiconductor (CMOS) circuits.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Devendra K. Sadana, Katherine L. Saenger
  • Publication number: 20140242746
    Abstract: A method for forming a photovoltaic device includes forming a doped layer on a crystalline substrate, the doped layer having an opposite dopant conductivity as the substrate. A non-crystalline transparent conductive electrode (TCE) layer is formed on the doped layer at a temperature less than 150 degrees Celsius. The TCE layer is flash annealed to crystallize material of the TCE layer at a temperature above about 150 degrees Celsius for less than 10 seconds.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicants: King Abdulaziz City for Science and Technology, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abdulrahman M. Albadri, Bahman Hekmatshoartabari, Devendra K. Sadana, Katherine L. Saenger
  • Patent number: 8785911
    Abstract: Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han, James Bowler Hannon, Katherine L. Saenger, George Stojan Tulevski
  • Publication number: 20140183686
    Abstract: An autonomous integrated circuit (IC) includes a solar cell formed on a bottom substrate of a silicon-on-insulator (SOI) substrate as a handle substrate; an insulating layer of the SOI substrate located on top of the solar cell; and a device layer formed on a top semiconductor layer of the SOI substrate located on top of the insulating layer, wherein a top contact of the device layer is electrically connected to a bottom contact of the solar cell such that the solar cell is enabled to power the device layer.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Norma E. Sosa Cortes, Wilfried E. Haensch, Steven J. Koester, Devendra K. Sadana, Katherine L. Saenger, Ghavam Shahidi, Davood Shahrjerdi
  • Patent number: 8723233
    Abstract: An integrated circuit includes at least one single-crystal fin having a first crystal orientation. The integrated circuit also includes at least one single-crystal fin having a second crystal orientation. The single-crystal fin having the first crystal orientation and the single-crystal fin having the second crystal orientation are substantially parallel.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Katherine L. Saenger
  • Patent number: 8722470
    Abstract: An integrated circuit fabrication apparatus is configured to fabricate an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. A bonding control processor is configured to bond a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A material growth processor is configured to form a volume of material extending through the first silicon layer from the second layer up to the surface of first layer. The material has a crystalline orientation that substantially matches the crystalline orientation of second layer. An etching processor is configured to selectively etch areas of the surface of the first layer that are outside of the region to create a first plurality of fins and areas inside the region to create a second plurality of fins.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Katherine L. Saenger
  • Publication number: 20140035008
    Abstract: An integrated circuit includes at least one single-crystal fin having a first crystal orientation. The integrated circuit also includes at least one single-crystal fin having a second crystal orientation. The single-crystal fin having the first crystal orientation and the single-crystal fin having the second crystal orientation are substantially parallel.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy M. COHEN, Katherine L. SAENGER
  • Publication number: 20140034699
    Abstract: Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Ibrahim Alhomoudi
  • Publication number: 20140027058
    Abstract: An integrated circuit fabrication apparatus is configured to fabricate an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. A bonding control processor is configured to bond a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A material growth processor is configured to form a volume of material extending through the first silicon layer from the second layer up to the surface of first layer. The material has a crystalline orientation that substantially matches the crystalline orientation of second layer. An etching processor is configured to selectively etch areas of the surface of the first layer that are outside of the region to create a first plurality of fins and areas inside the region to create a second plurality of fins.
    Type: Application
    Filed: October 4, 2013
    Publication date: January 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Guy M. COHEN, Katherine L. SAENGER
  • Patent number: 8598006
    Abstract: An embedded epitaxial semiconductor portion having a different composition than matrix of the semiconductor substrate is formed with a lattice mismatch and epitaxial alignment with the matrix of the semiconductor substrate. The temperature of subsequent ion implantation steps is manipulated depending on the amorphizing or non-amorphizing nature of the ion implantation process. For a non-amorphizing ion implantation process, the ion implantation processing step is performed at an elevated temperature, i.e., a temperature greater than nominal room temperature range. For an amorphizing ion implantation process, the ion implantation processing step is performed at nominal room temperature range or a temperature lower than nominal room temperature range. By manipulating the temperature of ion implantation, the loss of strain in a strained semiconductor alloy material is minimized.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: December 3, 2013
    Assignees: International Business Machines Corporation, Toshiba America Electronic Components, Inc.
    Inventors: Joel P. de Souza, Masafumi Hamaguchi, Ahmet S. Ozcan, Devendra K. Sadana, Katherine L. Saenger, Donald R. Wall
  • Publication number: 20130313683
    Abstract: Semiconductor variable capacitor (varactor) devices are provided, which are formed with an array of radial p-n junction structures to provide improved dynamic range and sensitivity. For example, a semiconductor varactor device includes a doped semiconductor substrate having first and second opposing surfaces and an array of pillar structures formed on the first surface of the doped semiconductor substrate. Each pillar structure includes a radial p-n junction structure. A first metallic contact layer is conformally formed over the array of pillar structures on the first surface of the doped semiconductor substrate. A second metallic contact layer formed on the second surface of the doped semiconductor substrate. An insulating layer is formed on the doped semiconductor substrate surrounding the array of pillar structures.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Oki Gunawan, Amlan Majumdar, Katherine L. Saenger
  • Publication number: 20130316538
    Abstract: The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Augustin J. Hong, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Davood Shahrjerdi, Kuen-Ting Shiu
  • Publication number: 20130316512
    Abstract: Semiconductor variable capacitor (varactor) devices are provided, which are formed with an array of radial p-n junction structures to provide improved dynamic range and sensitivity. For example, a semiconductor varactor device includes a doped semiconductor substrate having first and second opposing surfaces and an array of pillar structures formed on the first surface of the doped semiconductor substrate. Each pillar structure includes a radial p-n junction structure. A first metallic contact layer is conformally formed over the array of pillar structures on the first surface of the doped semiconductor substrate. A second metallic contact layer formed on the second surface of the doped semiconductor substrate. An insulating layer is formed on the doped semiconductor substrate surrounding the array of pillar structures.
    Type: Application
    Filed: June 13, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oki Gunawan, Amlan Majumdar, Katherine L. Saenger
  • Patent number: 8574969
    Abstract: An integrated circuit fabrication apparatus is configured to fabricate an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. A bonding control processor is configured to bond a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A material growth processor is configured to form a volume of material extending through the first silicon layer from the second layer up to the surface of first layer. The material has a crystalline orientation that substantially matches the crystalline orientation of second layer. An etching processor is configured to selectively etch areas of the surface of the first layer that are outside of the region to create a first plurality of fins and areas inside the region to create a second plurality of fins.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Katherine L. Saenger
  • Patent number: 8569803
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Publication number: 20130280885
    Abstract: A pulsed laser-initiated exfoliation method for patterning a Group III-nitride film on a growth substrate is provided. This method includes providing a Group III-nitride film a growth substrate, wherein a growth substrate/Group III-nitride film interface is present between the Group III-nitride film and the growth substrate. Next, a laser is selected that provides radiation at a wavelength at which the Group III-nitride film is transparent and the growth substrate is absorbing. The interface is then irradiated with pulsed laser radiation from the Group III-nitride film side of the growth substrate/Group III-nitride film interface to exfoliate a region of the Group III-nitride from the growth substrate. A method for transfer a Group-III nitride film from a growth substrate to a handle substrate is also provided.
    Type: Application
    Filed: January 24, 2013
    Publication date: October 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Can Bayram, Stephen W. Bedell, Devendra K. Sadana, Katherine L. Saenger
  • Patent number: 8563369
    Abstract: A method for fabricating an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. The method includes bonding a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A first plurality of fins and a second plurality of fins are created. A spacer is formed around each fin in the first plurality of fins and second plurality of fins. A set of regions of the second layer between each fin in the first plurality of fins and the second plurality of fins are recessed to form a base with exposed sidewalls under each fin in the first plurality of fins and the second plurality of fins. The base under each fin and a set of exposed regions between each fin is oxidized.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Katherine L. Saenger