Patents by Inventor Kathryn C. Fisher

Kathryn C. Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269993
    Abstract: A photovoltaic device, such as a solar cell, including a copper-containing-grid metallization structure that contains a metal phosphorus layer as a diffusion barrier is provided. The copper-containing-grid metallization structure includes, from bottom to top, an electroplated metal phosphorus layer that does not include copper or a copper alloy located within a grid pattern formed on a front side surface of a semiconductor substrate, and an electroplated copper-containing layer. A method of forming such a structure is also provided.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao
  • Patent number: 10170644
    Abstract: A photovoltaic device is provided that includes a semiconductor substrate including a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion one lying on top of the other, wherein an upper exposed surface of the semiconductor substrate represents a front side surface of the semiconductor substrate. A plurality of patterned antireflective coatings is located on the front side surface to provide a grid pattern including a busbar region and finger regions. The busbar region includes at least a real line interposed between at least two dummy lines. A material stack including at least one metal layer located on the semiconductor substrate in the busbar region and the finger regions.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath
  • Publication number: 20170200838
    Abstract: A photovoltaic device is provided that includes a semiconductor substrate including a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion one lying on top of the other, wherein an upper exposed surface of the semiconductor substrate represents a front side surface of the semiconductor substrate. A plurality of patterned antireflective coatings is located on the front side surface to provide a grid pattern including a busbar region and finger regions. The busbar region includes at least a real line interposed between at least two dummy lines. A material stack including at least one metal layer located on the semiconductor substrate in the busbar region and the finger regions.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath
  • Patent number: 9608134
    Abstract: A method of forming a photovoltaic device is provided that includes a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion, wherein an upper exposed surface of one of the semiconductor portions represents a front side surface of the semiconductor substrate. Patterned antireflective coating layers are formed on the front side surface of the semiconductor surface to provide a grid pattern including a busbar region and finger region. A mask having a shape that mimics each patterned antireflective coating layer is provided atop each patterned antireflective coating layer. A metal layer is electrodeposited on the busbar region and the finger regions. After removing the mask, an anneal is performed that reacts metal atoms from the metal layer react with semiconductor atoms from the busbar region and the finger regions forming a metal semiconductor alloy.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath
  • Publication number: 20160197208
    Abstract: A photovoltaic device, such as a solar cell, including a copper-containing-grid metallization structure that contains a metal phosphorus layer as a diffusion barrier is provided. The copper-containing-grid metallization structure includes, from bottom to top, an electroplated metal phosphorus layer that does not include copper or a copper alloy located within a grid pattern formed on a front side surface of a semiconductor substrate, and an electroplated copper-containing layer. A method of forming such a structure is also provided.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao
  • Patent number: 9284656
    Abstract: A photovoltaic device, such as a solar cell, including a copper-containing-grid metallization structure that contains a metal phosphorus layer as a diffusion barrier is provided. The copper-containing-grid metallization structure includes, from bottom to top, an electroplated metal phosphorus layer that does not include copper or a copper alloy located within a grid pattern formed on a front side surface of a semiconductor substrate, and an electroplated copper-containing layer. A method of forming such a structure is also provided.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao
  • Patent number: 9246024
    Abstract: A photovoltaic device is provided that includes a semiconductor substrate including a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion one on top of the other. A plurality of patterned antireflective coating layers is located on a p-type semiconductor surface of the semiconductor substrate, wherein at least one portion of the p-type semiconductor surface of the semiconductor substrate is exposed. Aluminum is located directly on the at least one portion of the p-type semiconductor surface of the semiconductor substrate that is exposed.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: January 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, Ming-Ling Yeh
  • Publication number: 20150136228
    Abstract: A method of forming a photovoltaic device is provided that includes a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion, wherein an upper exposed surface of one of the semiconductor portions represents a front side surface of the semiconductor substrate. Patterned antireflective coating layers are formed on the front side surface of the semiconductor surface to provide a grid pattern including a busbar region and finger region. A mask having a shape that mimics each patterned antireflective coating layer is provided atop each patterned antireflective coating layer. A metal layer is electrodeposited on the busbar region and the finger regions. After removing the mask, an anneal is performed that reacts metal atoms from the metal layer react with semiconductor atoms from the busbar region and the finger regions forming a metal semiconductor alloy.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath
  • Patent number: 8969122
    Abstract: Processes for fabricating photovoltaic devices in which the front side contact metal semiconductor alloy metallization patterns have a uniform thickness at edge portions as well as a central portion of each metallization pattern are provided.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath
  • Patent number: 8962374
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Satyavolu S. Papa Rao, Kathryn C. Fisher, Harold J. Hovel, Qiang Huang, Susan Huang, Young-Hee Kim
  • Patent number: 8946844
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Satyavolu S. Papa Rao, Kathryn C. Fisher, Harold J. Hovel, Qiang Huang, Young-hee Kim, Susan Huang
  • Patent number: 8865502
    Abstract: The present disclosure provides a method of forming a back side surface field of a solar cell without utilizing screen printing. The method includes first forming a p-type dopant layer directly on the back side surface of the semiconductor substrate that includes a p/n junction utilizing an electrodeposition method. The p/n junction is defined as the interface that is formed between an n-type semiconductor portion of the substrate and an underlying p-type semiconductor portion of the substrate. The plated structure is then annealed to from a P++ back side surface field layer directly on the back side surface of the semiconductor substrate. Optionally, a metallic film can be electrodeposited on an exposed surface of the P++ back side surface layer.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Nicholas C. M. Fuller, Satyavolu S. Papa Rao, Xiaoyan Shao, Jeffrey Hedrick
  • Publication number: 20140000693
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Satyavolu S. Papa Rao, Kathryn C. Fisher, Harold J. Hovel, Qiang Huang, Young-hee Kim, Susan Huang
  • Publication number: 20140000691
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Satyavolu S. PAPA RAO, Kathryn C. FISHER, Harold J. HOVEL, Qiang HUANG, Susan HUANG, Young-Hee KIM
  • Patent number: 8492899
    Abstract: The present disclosure relates to an improved method of providing a Ni silicide metal contact on a silicon surface by electrodepositing a Ni film on a silicon substrate. The improved method results in a controllable silicide formation wherein the silicide has a uniform thickness. The metal contacts may be incorporated in, for example, CMOS devices, MEM (micro-electro-mechanical) devices, and photovoltaic cells.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Xiaoyan Shao
  • Patent number: 8440494
    Abstract: Alternative additives that can be used in place of isopropyl alcohol in aqueous alkaline etchant solutions for texturing a surface of a single-crystalline silicon substrate are provided. The alternative additives do not have volatile constituents, yet can be used in an aqueous alkaline etchant solution to provide a pyramidal shaped texture surface to the single-crystalline silicon substrate that is exposed to such an etchant solution. Also provided is a method of forming a textured silicon surface. The method includes immersing a single-crystalline silicon substrate into an etchant solution to form a pyramid shaped textured surface on the single-crystalline silicon substrate. The etchant solution includes an alkaline component, silicon (etched into the solution as a bath conditioner) and glycerol or ethylene glycol as an additive. The textured surface of the single-crystalline silicon substrate has (111) faces that are now exposed.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Jun Liu, Satyavolu S. Papa Rao, George G. Totir, James Vichiconti
  • Publication number: 20130014812
    Abstract: A photovoltaic device is provided that includes a semiconductor substrate including a p-n junction with a p-type semiconductor portion and an n-type semiconductor portion one on top of the other. A plurality of patterned antireflective coating layers is located on a p-type semiconductor surface of the semiconductor substrate, wherein at least one portion of the p-type semiconductor surface of the semiconductor substrate is exposed. Aluminum is located directly on the at least one portion of the p-type semiconductor surface of the semiconductor substrate that is exposed.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, Ming-Ling Yeh
  • Publication number: 20130001784
    Abstract: A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Kenneth P. Rodbell, Xiaoyan Shao
  • Publication number: 20120325312
    Abstract: The present disclosure provides a method of forming a back side surface field of a solar cell without utilizing screen printing. The method includes first forming a p-type dopant layer directly on the back side surface of the semiconductor substrate that includes a p/n junction utilizing an electrodeposition method. The p/n junction is defined as the interface that is formed between an n-type semiconductor portion of the substrate and an underlying p-type semiconductor portion of the substrate. The plated structure is then annealed to from a P++ back side surface field layer directly on the back side surface of the semiconductor substrate. Optionally, a metallic film can be electrodeposited on an exposed surface of the P++ back side surface layer.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Nicholas C. M. Fuller, Satyavolu S. Papa Rao, Xiaoyan Shao, Jeffrey Hedrick
  • Publication number: 20120318341
    Abstract: Processes for fabricating photovoltaic devices in which the front side contact metal semiconductor alloy metallization patterns have a uniform thickness at edge portions as well as a central portion of each metallization pattern are provided.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathryn C. Fisher, Qiang Huang, Satyavolu S. Papa Rao, David L. Rath