Patents by Inventor Katrin Strandemar

Katrin Strandemar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9613410
    Abstract: Gas visualization in an image depicting a scene, for an example embodiment comprises capturing a first IR image depicting the scene at a first time instance and a second IR image depicting the scene at a second time instance; performing image processing operations on image data derived from said first IR image and from said second IR image, to generate a collection of data representing the location of gas in one of the first or second IR images; and generating a third image by adjusting pixel values in an image depicting the scene, dependent on pixel values of said collection of data. According to various embodiments, there is further provided further processing of the collection of data, and/or gas detection, before generation of the third image with adjusted pixel values.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: April 4, 2017
    Assignee: FLIR Systems AB
    Inventor: Katrin Strandemar
  • Publication number: 20170088098
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor occupants in an interior compartment of a vehicle. For example, a vehicle-mounted system may include one or more infrared imaging modules, a processor, a memory, alarm sirens, and a communication module. The vehicle-mounted system may be mounted on, installed in, or otherwise integrated into a vehicle with an interior compartment. The infrared imaging modules may be configured to capture thermal images of desired portions of the interior compartments. Various thermal image processing and analytics may be performed on the captured thermal images to determine the presence and various attributes of one or more occupants. Based on the determination of the presence and various attributes, occupant detection information or control signals may be generated. Occupant detection information may be used to perform various monitoring operations, and control signals may adjust various vehicle components.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Jeffrey D. Frank, Austin A. Richards, Victoria L. White, Nile E. Fairfield, Arthur Stout, David W. Lee, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Publication number: 20170078590
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 16, 2017
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 9565373
    Abstract: A method of presenting a visible representation of infrared (IR) radiation information onto an observed real world scene based on IR radiation emitted from said observed real world scene, using a thermography arrangement comprising an IR imaging system, a visible light imaging system, and a visible light projecting system.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 7, 2017
    Assignee: FLIR Systems AB
    Inventors: Katrin Strandemar, Henrik Jönsson
  • Publication number: 20170004609
    Abstract: The present disclosure relates to combination of images. A method according to an embodiment comprises: receiving a visual image and an infrared (IR) image of a scene and for a portion of said IR image extracting high spatial frequency content from a corresponding portion of said visual image. The method according to the embodiment further comprises combining said extracted high spatial frequency content from said portion of the visual image with said portion of the IR image, to generate a combined image, wherein the contrast and/or resolution in the portion of the IR image is increased compared to the contrast and/or resolution of said received IR image.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Inventor: Katrin Strandemar
  • Patent number: 9538038
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: January 3, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Weilming Sieh, David W. Dart, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Publication number: 20160366345
    Abstract: Various techniques are provided for implementing an infrared imaging system, especially for low power and small form factor applications. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. A low-dropout regulator (LDO) is integrated with the FPA and adapted to provide a regulated voltage in response to an external supply voltage. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors in response to the regulated voltage. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 15, 2016
    Applicant: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9521289
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 13, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: David W. Dart, Weilming Sieh, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: 9517679
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor occupants in an interior compartment of a vehicle. For example, a vehicle-mounted system may include one or more infrared imaging modules, a processor, a memory, alarm sirens, and a communication module. The vehicle-mounted system may be mounted on, installed in, or otherwise integrated into a vehicle with an interior compartment. The infrared imaging modules may be configured to capture thermal images of desired portions of the interior compartments. Various thermal image processing and analytics may be performed on the captured thermal images to determine the presence and various attributes of one or more occupants. Based on the determination of the presence and various attributes, occupant detection information or control signals may be generated. Occupant detection information may be used to perform various monitoring operations, and control signals may adjust various vehicle components.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 13, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Austin A. Richards, Victoria L. White, Nile E. Fairfield, Arthur Stout, David W. Lee, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9509924
    Abstract: Various techniques are disclosed for providing a wearable apparatus having an integrated infrared imaging module. In one example, a wearable apparatus implemented as a self-contained breathing apparatus (SCBA) may include a shield to protect a user from an external environment, one or more infrared imaging modules, a projector, a processor, and a communication module for projecting a user-viewable thermal image onto a surface of the shield. Such infrared imaging modules may be positioned internal to the SCBA for protection from a hazardous external environment. In another example, a wearable apparatus implemented as a welding mask may include one or more infrared imaging modules, a projector, a processor, and a communication module, so as to project a user-viewable thermal image onto a surface of a shield of the welding mask, while at the same time protecting these components and the welder's face from a harsh welding environment.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 29, 2016
    Assignee: FLIR SYSTEMS, INC.
    Inventors: William A. Terre, Andrew C. Teich, Giovanni Lepore, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9451183
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: September 20, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Publication number: 20160247266
    Abstract: Gas visualization in an image depicting a scene, for an example embodiment comprises capturing a first IR image depicting the scene at a first time instance and a second IR image depicting the scene at a second time instance; performing image processing operations on image data derived from said first IR image and from said second IR image, to generate a collection of data representing the location of gas in one of the first or second IR images; and generating a third image by adjusting pixel values in an image depicting the scene, dependent on pixel values of said collection of data. According to various embodiments, there is further provided further processing of the collection of data, and/or gas detection, before generation of the third image with adjusted pixel values.
    Type: Application
    Filed: February 29, 2016
    Publication date: August 25, 2016
    Inventor: Katrin Strandemar
  • Publication number: 20160224055
    Abstract: Various techniques are provided to detect abnormal clock rates in devices such as imaging sensor devices (e.g., infrared and/or visible light imaging devices). In one example, a device may include a clock rate detection circuit that may be readily integrated as part of the device to provide effective detection of an abnormal clock rate. The device may include a ramp generator, a counter, and/or other components which may already be implemented as part of the device. The ramp generator may generate a ramp signal independent of a clock signal provided to the device, while the counter may increment or decrement a count value in response to the clock signal. The device may include a comparator adapted to select a current count value of the counter when the ramp signal reaches a reference signal. A processor of the device may be adapted to determine whether the clock signal is operating in an acceptable frequency range, based on the selected count value.
    Type: Application
    Filed: December 7, 2015
    Publication date: August 4, 2016
    Inventors: Brian Simolon, Eric A. Kurth, Jim Goodland, Mark Nussmeier, Nicholas Hogasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Naseem Y. Aziz
  • Publication number: 20160156880
    Abstract: Systems having throwable devices with thermal imaging capabilities may be provided for observing a potentially hazardous environment with possible human or environmental threats. A system may include a throwable observation device configured to be thrown into the potentially hostile environment and to capture at least thermal images of portions of the environment and a mobile handset configured to wirelessly receive the captured thermal images from the observation device. The observation device may include a durable housing structure having openings, an imaging module in each of the openings, a processor for processing the captured thermal images, and communications components for transmitting the captured thermal images to the mobile handset. The mobile handset may include a processor for further processing the received captured thermal images and a display for displaying processed thermal images.
    Type: Application
    Filed: October 3, 2014
    Publication date: June 2, 2016
    Inventors: Andrew C. Teich, Jeffrey D. Frank, Brent Lammert, Thomas J. Scanlon, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Eric A. Kurth, Barbara Sharp
  • Patent number: 9338352
    Abstract: A method and systems of stabilizing a sequence of infrared (IR) images captured using an infrared (IR) imaging system, includes: generating edge information representations of selected captured IR images in said sequence; for each generated edge information representation, generating a second representation having a reduced amount of information compared to the edge information representation; determining displacements between captured IR images in relation to previous IR images in said sequence based on a comparison between said second representations; generating a stabilized sequence of IR images by shifting said captured IR images based on said determined displacements.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 10, 2016
    Assignee: FLIR Systems AB
    Inventor: Katrin Strandemar
  • Patent number: 9292909
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging devices to image scenes in proximity to a vehicle. An imaging system may include one or more infrared imaging devices, a processor, a memory, a display, a communication module, and modules to interface with a user, sensors, and/or a vehicle. Infrared imaging devices may be positioned in proximity to, mounted on, installed in, or otherwise fixed relative to a vehicle. Infrared imaging devices may be configured to capture infrared images of scenes in proximity to a vehicle. Various infrared image analytics and processing may be performed on captured infrared images to correct and/or calibrate the infrared images. Monitoring information, notifications, and/or control signals may be generated based on the corrected infrared images and then presented to a user and/or a monitoring and notification system, and/or used to control aspects of the vehicle.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: March 22, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Malin Ingerhed, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 9280812
    Abstract: Gas visualization in an image depicting a scene, for an example embodiment comprises capturing a first IR image depicting the scene at a first time instance and a second IR image depicting the scene at a second time instance; performing image processing operations on image data derived from said first IR image and from said second IR image, to generate a collection of data representing the location of gas in one of the first or second IR images; and generating a third image by adjusting pixel values in an image depicting the scene, dependent on pixel values of said collection of data. According to various embodiments, there is further provided further processing of the collection of data, and/or gas detection, before generation of the third image with adjusted pixel values.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: March 8, 2016
    Assignee: FLIR Systems AB
    Inventor: Katrin Strandemar
  • Patent number: 9247131
    Abstract: Various techniques are disclosed for providing systems for providing alignment guide information to selectively direct a visible light source to substantially align the visible light source with a desired subject and to project a visible light beam substantially on the desired subject. For example, a system may include a small form factor infrared imaging module to capture thermal images of a scene, which may be received by a processor to generate alignment guide information such as a user-viewable image of the scene, a user-viewable cue, and a framing reticle. In another example, such a system may be implemented as a camera. In yet another example, such a system may be implemented as a spotlight.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: January 26, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Joseph Kostrzewa, Shawn Jepson, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9235876
    Abstract: Methods and systems are provided to reduce noise in thermal images. In one example, a method includes receiving an image frame comprising a plurality of pixels arranged in a plurality of rows and columns. The pixels comprise thermal image data associated with a scene and noise introduced by an infrared imaging device. The image frame may be processed to determine a plurality of column correction terms, each associated with a corresponding one of the columns and determined based on relative relationships between the pixels of the corresponding column and the pixels of a neighborhood of columns. In another example, the image frame may be processed to determine a plurality of non-uniformity correction terms, each associated with a corresponding one of the pixels and determined based on relative relationships between the corresponding one of the pixels and associated neighborhood pixels within a selected distance.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: January 12, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Malin Ingerhed, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20150365592
    Abstract: Various techniques are disclosed for providing systems for providing alignment guide information to selectively direct a visible light source to substantially align the visible light source with a desired subject and to project a visible light beam substantially on the desired subject. For example, a system may include a small form factor infrared imaging module to capture thermal images of a scene, which may be received by a processor to generate alignment guide information such as a user-viewable image of the scene, a user-viewable cue, and a framing reticle. In another example, such a system may be implemented as a camera. In yet another example, such a system may be implemented as a spotlight.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 17, 2015
    Inventors: Joseph Kostrzewa, Shawn Jepson, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar