Patents by Inventor Katrin Strandemar

Katrin Strandemar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140253735
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Jeffrey D. Frank, Andrew C. Teich, Dwight Dumpert, Gerald W. Blakeley
  • Patent number: 8823803
    Abstract: An IR camera includes a thermal radiation capturing arrangement for capturing thermal radiation of an imaged view in response to input control unit(s) receiving user inputs from a user of the IR camera; a processing unit arranged to process the thermal radiation data in order for the thermal radiation data to be displayed by an IR camera display as thermal images; and an IR camera display arranged to display thermal images to a user of the IR camera. The processing unit is further arranged to determine at least one temperature reference value representing the temperature of the surrounding environment of the imaged view; and calculate at least one output power value indicative of an amount of energy dissipated in a part of the imaged view by using the temperature value of the thermal radiation data corresponding to said part of the imaged view and the at least one determined temperature reference value.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 2, 2014
    Assignee: FLIR Systems AB
    Inventors: Katrin Strandemar, Henrik Jönsson, Torbjörn Hamrelius, Gunnar Palm
  • Publication number: 20140240512
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: December 21, 2013
    Publication date: August 28, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140232875
    Abstract: Various techniques are provided for using one or more shielded (e.g., blinded, blocked, and/or obscured) infrared sensors of a thermal imaging device. In one example, a method includes capturing a signal from a shielded infrared sensor that is substantially blocked from receiving infrared radiation from a scene. The method also includes capturing a signal from an unshielded infrared sensor configured to receive the infrared radiation from the scene. The method also includes determining an average thermographic offset reference for the shielded and unshielded infrared sensors based on the captured signal of the shielded infrared sensor. The method also includes determining an absolute radiometric value for the scene based on the average thermographic offset reference and the captured signal of the unshielded infrared sensor.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 21, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Per Elmfors, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Barbara Sharp, Eric A. Kurth
  • Publication number: 20140218520
    Abstract: Various techniques are disclosed for smart surveillance camera systems and methods using thermal imaging to intelligently control illumination and monitoring of a surveillance scene. For example, a smart camera system may include a thermal imager, an IR illuminator, a visible light illuminator, a visible/near IR (NIR) light camera, and a processor. The camera system may capture thermal images of the scene using the thermal imager, and analyze the thermal images to detect a presence and an attribute of an object in the scene. In response to the detection, various light sources may be selectively operated to illuminate the object only when needed or desired, with a suitable type of light source, with a suitable beam angle and width, or in otherwise desirable manner. The visible/NIR light camera may also be selectively operated based on the detection to capture or record surveillance images containing objects of interest.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Publication number: 20140184807
    Abstract: Various techniques are provided for implementing a segmented focal plane array (FPA) of infrared sensors. In one example, a system includes a segmented FPA. The segmented FPA includes a top die having an array of infrared sensors (e.g., bolometers). The top die may also include a portion of a read-out integrated circuit (ROIC). The segmented FPA also includes a bottom die having at least a portion of the ROIC. The top and the bottom dies are electrically coupled via inter-die connections. Advantageously, the segmented FPA may be fabricated with a higher yield and a smaller footprint compared with conventional FPA architectures. Moreover, the segmented FPA may be fabricated using different semiconductor processes for each die.
    Type: Application
    Filed: December 13, 2013
    Publication date: July 3, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Brian Simolon, Eric A. Kurth, Mark Nussmeier, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140168445
    Abstract: Various techniques are provided for systems and methods to process images to reduce consumption of an available output dynamic range by the sky in images. For example, according to one or more embodiments of the disclosure, a region or area in images that may correspond to the sky may be identified based on the location of the horizon in the images. A distribution of irradiance levels in the identified sky region may be analyzed to determine a dynamic range attributable to the sky region. A transfer function that compresses the dynamic range attributable to the sky region may be generated and applied so that the sky in the images may be suppressed, thereby advantageously preserving more dynamic range for terrestrial objects and other objects of interest in the images.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 19, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140168433
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor aspects of a power system. A system may include one or more infrared imaging modules, a processor, a memory, a display, a communication module, and modules to control components of a power system. Infrared imaging modules may be mounted on, installed in, or otherwise integrated with a power system having one or more power system components. The infrared imaging modules may be configured to capture thermal images of portions of the power system. Various thermal image analytics and profiling may be performed on the captured thermal images to determine the operating conditions and temperatures of portions of the power system. Monitoring information may be generated based on the determined conditions and temperatures and then presented to a user of the power system.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 19, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Shawn Jepson, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140139643
    Abstract: An imager array may be provided as part of an imaging system. The imager array may include a plurality of infrared imaging modules. Each infrared imaging module may include a plurality of infrared sensors associated with an optical element. The infrared imaging modules may be oriented, for example, substantially in a plane facing the same direction and configured to detect images from the same scene. Such images may be processed in accordance with various techniques to provide images of infrared radiation. The infrared imaging modules may include filters or lens coatings to selectively detect desired ranges of infrared radiation. Such arrangements of infrared imaging modules in an imager array may be used to advantageous effect in a variety of different applications.
    Type: Application
    Filed: December 20, 2013
    Publication date: May 22, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140139685
    Abstract: Various techniques are provided for implementing an infrared imaging system. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors. The bias voltage is selected from a range of approximately 0.2 volts to approximately 0.7 volts. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Application
    Filed: December 9, 2013
    Publication date: May 22, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140112537
    Abstract: Various techniques are disclosed for systems and methods using thermal imaging to intelligently monitor thoroughfares. For example, an intelligent monitoring system may include an infrared imaging module, a processor, a communication module, a memory, and an adjustable component. The system may be mounted, installed, or otherwise disposed at various locations along thoroughfares, and capture thermal images of a scene that includes at least a portion of the thoroughfares. Various thermal image processing and analysis operations may be performed on the thermal images to generate comprehensive monitoring information including an indication of detected objects in the scene and at least one attribute associated with the objects. Various actions may be taken, such as generating various alarms and intelligently adjusting operation of various adjustable devices on thoroughfares, based on the monitoring information.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 24, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Publication number: 20140104415
    Abstract: Techniques are disclosed for measurement devices and methods to obtain various physical and/or electrical parameters in an integrated manner. For example, a measurement device may include a housing, an optical emitter, a sensor, a distance measurement circuit, a length measurement circuit, an electrical meter circuit, a display, an infrared imaging module, and/or a non-thermal imaging module. The device may be conveniently carried and utilized by users to perform a series of distance measurements, wire length measurements, electrical parameter measurements, and/or fault inspections, in an integrated manner without using multiple different devices. In one example, electricians may utilize the device to perform installation of electrical wires and/or other tasks at various locations (e.g., electrical work sites). In another example, electricians may utilize the device to view a thermal image of one or more scenes at such locations for locating potential electrical faults.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 17, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140108850
    Abstract: Various techniques are provided to detect abnormal clock rates in devices such as imaging sensor devices (e.g., infrared and/or visible light imaging devices). In one example, a device may include a clock rate detection circuit that may be readily integrated as part of the device to provide effective detection of an abnormal clock rate. The device may include a ramp generator, a counter, and/or other components which may already be implemented as part of the device. The ramp generator may generate a ramp signal independent of a clock signal provided to the device, while the counter may increment or decrement a count value in response to the clock signal. The device may include a comparator adapted to select the current count value of the counter when the ramp signal reaches a reference signal. A processor of the device may be adapted to determine whether the clock signal is operating in an acceptable frequency range, based on the selected count value.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 17, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Brian Simolon, Eric A. Kurth, Jim Goodland, Mark Nussmeier, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20140098237
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Weilming Sieh, David W. Dart, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Publication number: 20140093133
    Abstract: Various techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor occupants in an interior compartment of a vehicle. For example, a vehicle-mounted system may include one or more infrared imaging modules, a processor, a memory, alarm sirens, and a communication module. The vehicle-mounted system may be mounted on, installed in, or otherwise integrated into a vehicle that has an interior compartment. The infrared imaging modules may be configured to capture thermal images of desired portions of the interior compartments. Various thermal image processing and analytics may be performed on the captured thermal images to determine the presence and various attributes of one or more occupants. Based on the determination of the presence and various attributes, occupant detection information and/or control signals may be generated.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 3, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Austin A. Richards, Victoria L. White, Nile E. Fairfield, Arthur Stout, David W. Lee, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Publication number: 20140092258
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: David W. Dart, Weilming Sieh, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Publication number: 20140092257
    Abstract: Various techniques are disclosed for performing non-uniformity correction (NUC) for infrared imaging devices. Intentionally blurred image frames may be obtained and processed to correct for FPN (e.g., random spatially uncorrelated FPN in one embodiment) associated with infrared sensors of the infrared imaging device. Intentionally blurred image frames may be used to distinguish between FPN associated with the infrared sensors and desired scene information. Advantageously, such techniques may be implemented without requiring the use of a shutter to perform flat field correction for the infrared imaging device.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Hogasten, Theodore R. Hoelter, Katrin Strandemar
  • Publication number: 20140092256
    Abstract: Various techniques are provided for implementing, operating, and manufacturing infrared imaging devices using integrated circuits. In one example, a system includes a focal plane array (FPA) integrated circuit comprising an array of infrared sensors adapted to image a scene, a plurality of active circuit components, a first metal layer disposed above and connected to the circuit components, a second metal layer disposed above the first metal layer and connected to the first metal layer, and a third metal layer disposed above the second metal layer and below the infrared sensors. The third metal layer is connected to the second metal layer and the infrared sensors. The first, second, and third metal layers are the only metal layers of the FPA between the infrared sensors and the circuit components. The first, second, and third metal layers are adapted to route signals between the circuit components and the infrared sensors.
    Type: Application
    Filed: November 27, 2013
    Publication date: April 3, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Brian Simolon, Eric A. Kurth, Steve Barskey, Mark Nussmeier, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 8680468
    Abstract: An IR camera includes a first optical subsystem for generating an IR image of an object and a second optical subsystem for generating a visual light image of the object. The IR camera further includes a focusing device for focusing the first optical subsystem. The IR camera also has a processor for determining a focus distance for focusing the first optical subsystem on the object. The processor determines the focus distance based on a displacement of a feature in the visual light image.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 25, 2014
    Assignee: FLIR Systems AB
    Inventors: Katrin Strandemar, Björn Roth, Magnus Boman
  • Patent number: 8654239
    Abstract: An infrared (IR) camera comprising: a camera housing having an image capturing device; an objective with an optical lens system for generating an IR image of an object; a focusing mechanism for focusing the optical lens system; a focus ring that is displaceably mounted on the objective and adapted to control an electromechanical focusing servo system actuating the focusing mechanism dependent on a displacement of the focus ring.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: February 18, 2014
    Assignee: FLIR Systems AB
    Inventors: Rune Bergqvist, Katrin Strandemar, Ove Gustafsson