Patents by Inventor Katsuhiko Yamaguchi

Katsuhiko Yamaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100222952
    Abstract: A vehicle includes a plurality of batteries, a vehicle load (motor generators, inverters, boost converters, connection units, and system main relays) configured to be able to select at least one of the plurality of batteries as an electric power supply source, and for generating drive force by receiving electric power from the electric power supply source, and a control unit for controlling the vehicle load such that the vehicle load receives the electric power from the electric power supply source in response to a selection instruction for selecting the electric power supply source. The selection instruction is input by a user. That is, the user can select a battery to be used for traveling of the vehicle.
    Type: Application
    Filed: December 3, 2008
    Publication date: September 2, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Katsuhiko Yamaguchi
  • Patent number: 7715957
    Abstract: A hybrid ECU executes a program including the steps of: calculating an SOC of a battery when turn-on of pre-air-conditioning is requested; prohibiting pre-air-conditioning when the SOC does not satisfy a condition that the SOC is greater than an SOC (Y %) necessary for warm-up and running; and notifying a driver of prohibition of pre-air-conditioning.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: May 11, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Yamaguchi, Osamu Harada
  • Publication number: 20090277704
    Abstract: A hybrid vehicle has as a travel mode an EV mode for traveling while stopping the engine, and an HV mode for operating the engine. An ECU (50A) includes first and second traveling distance operating units (140, 150), and a determination unit (160). The first traveling distance operating unit (140) calculates an EV traveling distance (L1) indicative of a total traveling distance in the EV mode. The second traveling distance operating unit (150) calculates the engine use traveling distance (L2) indicative of a total traveling distance when the engine is operated. The determination unit (160) determines the necessity of maintenance of predetermined elements included in the vehicle based on the EV traveling distance (L1) and the engine use traveling distance (L2).
    Type: Application
    Filed: October 19, 2007
    Publication date: November 12, 2009
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Katsuhiko Yamaguchi
  • Patent number: 7610954
    Abstract: The technique of the invention determines whether input data for driving and controlling a cooling fan have any abnormality (steps S100 and S110), sets an actual drive level F* of the cooling fan to a high level (Hi) in the event of detection of any abnormality (step S130), and controls a fan motor to drive the cooling fan at the set drive level F* (step S140). This arrangement effectively prevents a temperature rise to an abnormally high level in any of an engine and motors even in the event of any abnormality arising in the input data.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: November 3, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ikuo Ando, Osamu Harada, Yukio Kobayashi, Katsuhiko Yamaguchi, Kazuhiro Ichimoto, Takahiro Nishigaki, Daigo Ando, Mamoru Tomatsuri, Keiko Hasegawa
  • Publication number: 20090118980
    Abstract: An engine ECU (280) and an HV_ECU (320) control a throttle motor (296) such that the throttle valve opening degree (TH) does not exceed a prescribed limit (THlim) and a rate of increase (Ta/t) in the throttle valve opening degree is equal to or lower than a predetermined opening degree increase rate (Tb/t) for a predetermined time period after start-up of the engine (120) is initiated. Thus, power output from the engine is controlled so as not to increase significantly for the predetermined time period. Accordingly, while the engine starts up, a shock that can be felt by a driver can be suppressed. In addition, variation in the amount of air taken into the engine when the engine is started is also reduced, which reduces variation in the amount of pollutants in the exhaust gas emitted while the engine starts up.
    Type: Application
    Filed: February 23, 2007
    Publication date: May 7, 2009
    Applicants: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Koichiro Muta, Katsuhiko Yamaguchi, Eiji Masuda
  • Patent number: 7520349
    Abstract: A control method of a vehicle includes a step of running the vehicle in an EV running mode in accordance with an operation of a driver, a step of performing a warming-up running, when it is determined that warming up is required, and a step of prohibiting the EV running mode such that the warming up running can be performed.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: April 21, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Yamaguchi, Osamu Harada, Yukio Kobayashi, Kiyoshiro Ueoka, Kazuhiro Ichimoto, Takahiro Nishigaki, Makoto Yamazaki, Mamoru Tomatsuri
  • Publication number: 20090088919
    Abstract: A drive force control portion (90B) firstly changes a front wheel command torque (Tfcm) and a rear wheel command torque (Trcm) so that each command torque reaches a torque in a predetermined range. For example, if the rear wheel command torque (Trcm) reaches the torque in the predetermined range earlier than the front wheel command torque (Tfcm), the drive force control portion (90B) restricts the change of the rear wheel command torque (Trcm) (holds the rear wheel command torque Trcm constant) until the front wheel command torque (Tfcm) reaches the torque in the predetermined range. The drive force control portion (90B) releases the restriction on the change of the rear wheel command torque (Trcm) after the front wheel command torque (Tfcm) and the rear wheel command torque (Trcm) have entered the predetermined range. Therefore, it becomes possible to improve the vehicle stability in a vehicle that includes a plurality of power sources that drives a plurality of wheels.
    Type: Application
    Filed: February 6, 2007
    Publication date: April 2, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Koichiro Muta, Katsuhiko Yamaguchi, Eiji Masuda
  • Patent number: 7478691
    Abstract: A delay time for delaying starting of an internal combustion engine in a hybrid vehicle is set to a predetermined time based on an engine coolant temperature and a state of an air conditioner switch. Starting of the engine is delayed for the predetermined time if it is determined that a vehicle can run using only a motor based on a required torque, a required power and an SOC of the battery. The predetermined time is determined based on a time necessary for completing preheating of an engine by a preheating device, preparations of sensors such as an air-furl ratio sensor, and warming-up of an exhaust gas purifying device. As a result, it is possible to efficiently perform start of the engine and operation immediately after the engine start, and to make control at the engine start time simple.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: January 20, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Yamaguchi, Osamu Harada, Yukio Kobayashi, Kiyoshiro Ueoka, Takahiro Nishigaki, Mamoru Tomatsuri, Koichiro Muta
  • Publication number: 20080289894
    Abstract: A distribution ratio determining unit determines the distribution ratio for distributing a required torque based on a static load distribution ratio, when the sign of the required torque is negative. The distribution ratio determining unit determines the distribution ratio based on a dynamic load distribution ratio, when the sign of the required torque is positive. The distribution ratio determining unit determines the distribution ratio based on the static load distribution ratio and the dynamic load distribution ratio, when the sign of the required torque changes. Thus, even when the sign of the required torque changes, it is possible to prevent the driving forces for a plurality of wheels of a vehicle from changing discontinuously.
    Type: Application
    Filed: February 6, 2007
    Publication date: November 27, 2008
    Applicants: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Koichiro Muta, Katsuhiko Yamaguchi, Eiji Masuda
  • Patent number: 7406378
    Abstract: In response to simultaneous ON settings of a heater switch signal HSW and an eco switch signal ESW, an eco priority map is set to an intermittent operation permission map (step S350). The heater switch signal HSW is output from a heater switch that is operated to warm up a passenger compartment, while the eco switch signal ESW is output from an eco switch that is operated to give preference to improvement in fuel consumption of the vehicle over the heater function. The eco priority map is designed to allow intermittent operation of an engine in a lower range of cooling water temperature Tw of the engine than that in a heater-on state map set in response to OFF setting of the eco switch signal ESW and ON setting of the heater switch signal HSW.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 29, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Osamu Harada, Katsuhiko Yamaguchi
  • Patent number: 7380537
    Abstract: In a vehicle incorporating an internal combustion engine having in-cylinder injectors and intake manifold injectors and performing engine intermittent operation control, at the end of vehicle operation, the fuel pressure is decreased in both a high-pressure delivery pipe and a low-pressure delivery pipe by actuation (opening) of an electromagnetic relief valve and by stop of operation of a low-pressure fuel pump. This prevents deterioration in emission performance at the next engine start attributable to fuel leakage due to degradation in oil tightness of the injectors during the operation stop period. When the engine is temporarily stopped by engine intermittent operation control, while the low-pressure fuel pump is stopped, actuation (opening) of the electromagnetic relief valve is prohibited. At the engine restart after temporary stop, the fuel in the high-pressure delivery pipe having its pressure secured at a certain level is injected to quickly start the engine.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: June 3, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Yamaguchi, Toshio Inoue, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Patent number: 7353798
    Abstract: A low-pressure delivery pipe provided with intake manifold injectors, a fuel pressure regulator, a high-pressure fuel pump, a high-pressure delivery pipe provided with in-cylinder injectors, and an electromagnetic relief valve are connected in series at the downstream of a low-pressure fuel pump that discharges a fuel within a fuel tank at a prescribed pressure. Since the low-pressure delivery pipe is arranged downstream of the low-pressure fuel pump, the fuel pressure within the low-pressure delivery pipe is lowered upon stop of vehicle operation, in response to stop of the low-pressure fuel pump. The fuel pressure within the high-pressure delivery pipe is also lowered in response to stop of the low-pressure fuel pump, by opening the electromagnetic relief valve upon stop of vehicle operation. Thus, oil tightness of the injectors during the stop of vehicle operation is ensured.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: April 8, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Tokuda, Naoki Kurata, Katsuhiko Yamaguchi, Toshio Inoue, Naoto Suzuki, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Patent number: 7316219
    Abstract: In a vehicle incorporating an internal combustion engine having in-cylinder injectors and intake manifold injectors and performing engine intermittent operation control, at the end of vehicle operation, the fuel pressure is decreased in both a high-pressure delivery pipe and a low-pressure delivery pipe by actuation (opening) of an electromagnetic relief valve and by stop of operation of a low-pressure fuel pump. This prevents deterioration in emission performance at the next engine start attributable to fuel leakage due to degradation in oil tightness of the injectors during the operation stop period. When the engine is temporarily stopped by engine intermittent operation control, while the low-pressure fuel pump is stopped, actuation (opening) of the electromagnetic relief valve is prohibited. At the engine restart after temporary stop, the fuel in the high-pressure delivery pipe having its pressure secured at a certain level is injected to quickly start the engine.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: January 8, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuhiko Yamaguchi, Toshio Inoue, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Publication number: 20070289577
    Abstract: In a vehicle incorporating an internal combustion engine having in-cylinder injectors and intake manifold injectors and performing engine intermittent operation control, at the end of vehicle operation, the fuel pressure is decreased in both a high-pressure delivery pipe and a low-pressure delivery pipe by actuation (opening) of an electromagnetic relief valve and by stop of operation of a low-pressure fuel pump. This prevents deterioration in emission performance at the next engine start attributable to fuel leakage due to degradation in oil tightness of the injectors during the operation stop period. When the engine is temporarily stopped by engine intermittent operation control, while the low-pressure fuel pump is stopped, actuation (opening) of the electromagnetic relief valve is prohibited. At the engine restart after temporary stop, the fuel in the high-pressure delivery pipe having its pressure secured at a certain level is injected to quickly start the engine.
    Type: Application
    Filed: August 6, 2007
    Publication date: December 20, 2007
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko Yamaguchi, Toshio Inoue, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Patent number: 7281509
    Abstract: The start control procedure of the invention lags an open-close timing VVT of an intake valve, restricts a throttle opening TH of a throttle valve, and starts cranking an engine with a lower torque Tlow. When a pressure Pf of a fuel supplied to in-cylinder fuel injection valves reaches or exceeds a preset reference value, which is greater than a sum of an in-cylinder compression pressure Pin and a closed valve position-retaining pressure Pcv of the in-cylinder fuel injection valves, the start control procedure cranks the engine with a standard cranking torque Tset. The start control procedure then starts advance of the open-close timing VVT of the intake valve, cancels the restriction of the throttle opening TH, and starts fuel injection from the in-cylinder fuel injection valves.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 16, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keita Fukui, Keiko Hasegawa, Mamoru Tomatsuri, Naoto Suzuki, Toshio Inoue, Katsuhiko Yamaguchi
  • Publication number: 20070233357
    Abstract: In stopping an internal combustion engine, an engine stop is controlled such that, among a plurality of cylinders of the internal combustion engine, a cylinder arranged at a position close to a transmission halts in a compression stroke. More specifically, in stopping an internal combustion engine, at a point when the rotation speed of the internal combustion engine becomes less than a prescribed value (ST3), the remaining rotation angle required for a cylinder #4 close to a transmission to halt in a compression stroke is calculated (ST5). Based on the calculated value of the remaining rotation angle, a crankshaft of the internal combustion engine is forcibly driven by controlling the driving of an electric motor (for example, motor generator) (ST6), so that cylinder #4 closest to the transmission is stopped in a compression stroke.
    Type: Application
    Filed: January 31, 2006
    Publication date: October 4, 2007
    Inventors: Shinichi Sugai, Katsuhiko Yamaguchi
  • Publication number: 20070220883
    Abstract: In response to simultaneous ON settings of a heater switch signal HSW and an eco switch signal ESW, an eco priority map is set to an intermittent operation permission map (step S350). The heater switch signal HSW is output from a heater switch that is operated to warm up a passenger compartment, while the eco switch signal ESW is output from an eco switch that is operated to give preference to improvement in fuel consumption of the vehicle over the heater function. The eco priority map is designed to allow intermittent operation of an engine in a lower range of cooling water temperature Tw of the engine than that in a heater-on state map set in response to OFF setting of the eco switch signal ESW and ON setting of the heater switch signal HSW.
    Type: Application
    Filed: May 26, 2005
    Publication date: September 27, 2007
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Osamu Harada, Katsuhiko Yamaguchi
  • Patent number: 7263972
    Abstract: A low-pressure delivery pipe provided with intake manifold injectors, a fuel pressure regulator, a high-pressure fuel pump, a high-pressure delivery pipe provided with in-cylinder injectors, and an electromagnetic relief valve are connected in series at the downstream of a low-pressure fuel pump that discharges a fuel within a fuel tank at a prescribed pressure. Since the low-pressure delivery pipe is arranged downstream of the low-pressure fuel pump, the fuel pressure within the low-pressure delivery pipe is lowered upon stop of vehicle operation, in response to stop of the low-pressure fuel pump. The fuel pressure within the high-pressure delivery pipe is also lowered in response to stop of the low-pressure fuel pump, by opening the electromagnetic relief valve upon stop of vehicle operation. Thus, oil tightness of the injectors during the stop of vehicle operation is ensured.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: September 4, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Tokuda, Naoki Kurata, Katsuhiko Yamaguchi, Toshio Inoue, Naoto Suzuki, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Publication number: 20070199542
    Abstract: A low-pressure delivery pipe provided with intake manifold injectors, a fuel pressure regulator, a high-pressure fuel pump, a high-pressure delivery pipe provided with in-cylinder injectors, and an electromagnetic relief valve are connected in series at the downstream of a low-pressure fuel pump that discharges a fuel within a fuel tank at a prescribed pressure. Since the low-pressure delivery pipe is arranged downstream of the low-pressure fuel pump, the fuel pressure within the low-pressure delivery pipe is lowered upon stop of vehicle operation, in response to stop of the low-pressure fuel pump. The fuel pressure within the high-pressure delivery pipe is also lowered in response to stop of the low-pressure fuel pump, by opening the electromagnetic relief valve upon stop of vehicle operation. Thus, oil tightness of the injectors during the stop of vehicle operation is ensured.
    Type: Application
    Filed: April 26, 2007
    Publication date: August 30, 2007
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuyuki Tokuda, Naoki Kurata, Katsuhiko Yamaguchi, Toshio Inoue, Naoto Suzuki, Mamoru Tomatsuri, Keiko Hasegawa, Keita Fukui
  • Patent number: 7263053
    Abstract: An information recording method and information recording apparatus is capable of resolving the trade-off relation between recording density and transmittance, wherein either the reproduction (playback) signal quality or the recording sensitivity is lowered. For this purpose, a voltage is applied by way of ball bearings or slip rings to a specified layer of a medium having multiple layers. The light transmittance of the recording layer is changed by application of this voltage. The tradeoff relationship between recording density and transmittance is eliminated thereby, and the recording density and transmittance levels are both improved, so as to enhance the recording reliability.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: August 28, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Motoyasu Terao, Katsuhiko Yamaguchi, Tadao Ino, Kyoko Kojima, Harukazu Miyamoto, Takeshi Maeda, Yuko Tsuchiya