Patents by Inventor Katsuhisa Tanaka

Katsuhisa Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121249
    Abstract: A semiconductor device of an embodiment includes a silicon carbide layer having a first plane and a second plane and includes a trench located on a first plane side and has a first region and a second region, a first silicon carbide region of an n-type, a second silicon carbide region of a p-type between the first silicon carbide region and the first plane, a third silicon carbide region of the n-type between the second silicon carbide region and the first plane, and a fourth silicon carbide region of the p-type between the second region and the first silicon carbide region; a gate electrode in the first region; a first electrode on the first plane side of the silicon carbide layer, a part of the first electrode is located in the second region and is in contact with the third and the fourth silicon carbide region; and a second electrode.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 14, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya Kyogoku, Katsuhisa Tanaka, Ryosuke Iijima
  • Patent number: 11069803
    Abstract: A semiconductor device according to an embodiment includes: a SiC layer having a first plane, a second plane, a first trench located on a first plane side, an n-type first SiC region, a p-type second SiC region between the first SiC region and the first plane, an n-type third SiC region between the second SiC region and the first plane, and a p-type fourth SiC region between the first SiC region and the first plane, at least a portion of the fourth SiC region located in the second SiC region, the fourth SiC region having a higher p-type impurity concentration than the second SiC region; a gate electrode in the first trench; a first electrode located on the first plane side; and a second electrode located on a second plane side. A depth of the fourth SiC region increases with distance from the first trench.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: July 20, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsuhisa Tanaka, Shinya Kyogoku, Ryosuke Iijima, Shinichi Kimoto
  • Patent number: 11043586
    Abstract: A semiconductor device according to an embodiment includes: a SiC layer having a first plane and a second plane facing the first plane, the SiC layer including a first trench on a first plane side, an n-type first SiC region, a p-type second SiC region, an n-type third SiC region located in this order from the second plane to the first plane, a p-type fourth SiC region between the first SiC region and the first trench, a fifth SiC region between the first SiC region and the first plane, and a sixth SiC region between the fourth SiC region and the fifth SiC region, and the sixth SiC region having an n-type impurity concentration higher than an n-type impurity concentration of the first SiC region; a gate electrode in the first trench; a first electrode on the first plane side; and a second electrode on a second plane side.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: June 22, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya Kyogoku, Ryosuke Iijima, Shinichi Kimoto, Katsuhisa Tanaka
  • Publication number: 20210184030
    Abstract: A semiconductor device of an embodiment includes an element region and a termination region surrounding the element region. The element region includes a gate trench, a first silicon carbide region of n-type, a second silicon carbide region of p-type on the first silicon carbide region, a third silicon carbide region of n-type on the second silicon carbide region, and a fourth silicon carbide region of p-type sandwiches the first silicon carbide region and the second silicon carbide region with the gate trench, the fourth silicon carbide region being deeper than the gate trench. The termination region includes a first trench surrounding the element region, and a fifth silicon carbide region of p-type between the first trench and the first silicon carbide region, the fifth silicon carbide region same or shallower than the fourth silicon carbide region. The semiconductor device includes a gate electrode, a first electrode, and a second electrode.
    Type: Application
    Filed: August 19, 2020
    Publication date: June 17, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsuhisa TANAKA, Ryosuke IIJIMA
  • Patent number: 10995844
    Abstract: In a breather structure of a transmission, a gear chamber of the transmission is disposed between an engine and an electric motor control device for an electric motor, and a breather piping is inserted into a breather hole in an upper wall of the gear chamber. When viewed from above, in a vehicle width direction, a part of an intake system member and the electric power control device are overlapped together, and a part of the intake system member and the gear chamber are overlapped together. Therefore, a direction of water splashed up from a road surface and flowing forward is changed downward so that the breather hole is easily covered with water. However, since an atmosphere opening part of the breather piping is disposed above the electric motor chamber, even if the breather hole is covered with water, a breather function is not lost.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 4, 2021
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki Kita, Takafumi Maruyama, Katsuhisa Tanaka
  • Publication number: 20210083099
    Abstract: A semiconductor device according to an embodiment includes: a silicon carbide layer having a first plane, a second plane facing the first plane, a first trench, a second trench, an n-type first silicon carbide region, a p-type second silicon carbide region between the first silicon carbide region and the first plane, an n-type third silicon carbide region between the second silicon carbide region and the first plane, and a p-type fourth silicon carbide region between the second trench and the first silicon carbide region; a gate electrode being located in the first trench; a gate insulating layer; a first electrode, a portion of the first electrode being located in the second trench; a second electrode; and an interlayer insulating layer being located between the gate electrode and the first electrode, in which an interface between the first electrode and the interlayer insulating layer is located in the first trench.
    Type: Application
    Filed: February 21, 2020
    Publication date: March 18, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinichi KIMOTO, Katsuhisa TANAKA, Shinya KYOGOKU, Ryosuke IIJIMA
  • Publication number: 20210083101
    Abstract: A semiconductor device according to an embodiment includes: a SiC layer having a first plane and a second plane facing the first plane, the SiC layer including a first trench on a first plane side, an n-type first SiC region, a p-type second SiC region, an n-type third SiC region located in this order from the second plane to the first plane, a p-type fourth SiC region between the first SiC region and the first trench, a fifth SiC region between the first SiC region and the first plane, and a sixth SiC region between the fourth SiC region and the fifth SiC region, and the sixth SiC region having an n-type impurity concentration higher than an n-type impurity concentration of the first SiC region; a gate electrode in the first trench; a first electrode on the first plane side; and a second electrode on a second plane side.
    Type: Application
    Filed: February 21, 2020
    Publication date: March 18, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya KYOGOKU, Ryosuke IIJIMA, Shinichi KIMOTO, Katsuhisa TANAKA
  • Publication number: 20210083100
    Abstract: A semiconductor device according to an embodiment includes: a SiC layer having a first plane, a second plane, a first trench located on a first plane side, an n-type first SiC region, a p-type second SiC region between the first SiC region and the first plane, an n-type third SiC region between the second SiC region and the first plane, and a p-type fourth SiC region between the first SiC region and the first plane, at least a portion of the fourth SiC region located in the second SiC region, the fourth SiC region having a higher p-type impurity concentration than the second SiC region; a gate electrode in the first trench; a first electrode located on the first plane side; and a second electrode located on a second plane side. A depth of the fourth SiC region increases with distance from the first trench.
    Type: Application
    Filed: February 21, 2020
    Publication date: March 18, 2021
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuhisa TANAKA, Shinya KYOGOKU, Ryosuke IIJIMA, Shinichi KIMOTO
  • Publication number: 20210036102
    Abstract: A semiconductor device of an embodiment includes a SiC layer including a first trench, a second trench having first and second regions, an n-type first SiC region, a p-type second SiC region, an n-type third SiC region, a p-type fourth SiC region between the first trench and the first SiC region, and a p-type fifth SiC region between the second trench and the first SiC region and having a first portion and a second portion, a gate electrode in the first trench, a first electrode in the second trench, and a second electrode. A distance between the first trench and the first region is greater than a distance between the first trench and the second region, the first portion is separated from the fourth SiC region, the second portion contacts the fourth SiC region, the first region contacts the first portion, and the second region contacts the second portion.
    Type: Application
    Filed: February 21, 2020
    Publication date: February 4, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya KYOGOKU, Katsuhisa TANAKA, Ryosuke IIJIMA
  • Publication number: 20210036149
    Abstract: A semiconductor device of an embodiment includes a silicon carbide layer having a first plane and a second plane and includes a trench located on a first plane side and has a first region and a second region, a first silicon carbide region of an n-type, a second silicon carbide region of a p-type between the first silicon carbide region and the first plane, a third silicon carbide region of the n-type between the second silicon carbide region and the first plane, and a fourth silicon carbide region of the p-type between the second region and the first silicon carbide region; a gate electrode in the first region; a first electrode on the first plane side of the silicon carbide layer, a part of the first electrode is located in the second region and is in contact with the third and the fourth silicon carbide region; and a second electrode.
    Type: Application
    Filed: February 24, 2020
    Publication date: February 4, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya KYOGOKU, Katsuhisa TANAKA, Ryosuke IIJIMA
  • Publication number: 20210003204
    Abstract: In a breather structure of a transmission, a gear chamber of the transmission is disposed between an engine and an electric motor control device for an electric motor, and a breather piping is inserted into a breather hole in an upper wall of the gear chamber. When viewed from above, in a vehicle width direction, a part of an intake system member and the electric power control device are overlapped together, and a part of the intake system member and the gear chamber are overlapped together. Therefore, a direction of water splashed up from a road surface and flowing forward is changed downward so that the breather hole is easily covered with water. However, since an atmosphere opening part of the breather piping is disposed above the electric motor chamber, even if the breather hole is covered with water, a breather function is not lost.
    Type: Application
    Filed: June 29, 2020
    Publication date: January 7, 2021
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki Kita, Takafumi Maruyama, Katsuhisa Tanaka
  • Patent number: 10763354
    Abstract: A semiconductor device of an embodiment includes a silicon carbide layer having a first and a second plane, a trench, a gate electrode in the trench, an n-type first silicon carbide region, a p-type second silicon carbide region and a p-type third silicon carbide region provided between the first silicon carbide region and the first plane and interposing the trench therebetween, a p-type sixth silicon carbide region between the first silicon carbide region and the second silicon carbide region, a p-type seventh silicon carbide region between the first silicon carbide region and the third silicon carbide region, an eighth silicon carbide region between the first silicon carbide region and the sixth silicon carbide region, and a ninth silicon carbide region between the first silicon carbide region and the seventh silicon carbide region. The eighth silicon carbide region has a plurality of first regions extending toward the ninth silicon carbide region.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: September 1, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Kyogoku, Katsuhisa Tanaka, Ryosuke Iijima
  • Publication number: 20200035825
    Abstract: A semiconductor device of an embodiment includes a silicon carbide layer having a first and a second plane, a trench, a gate electrode in the trench, an n-type first silicon carbide region, a p-type second silicon carbide region and a p-type third silicon carbide region provided between the first silicon carbide region and the first plane and interposing the trench therebetween, a p-type sixth silicon carbide region between the first silicon carbide region and the second silicon carbide region, a p-type seventh silicon carbide region between the first silicon carbide region and the third silicon carbide region, an eighth silicon carbide region between the first silicon carbide region and the sixth silicon carbide region, and a ninth silicon carbide region between the first silicon carbide region and the seventh silicon carbide region. The eighth silicon carbide region has a plurality of first regions extending toward the ninth silicon carbide region.
    Type: Application
    Filed: February 27, 2019
    Publication date: January 30, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinya KYOGOKU, Katsuhisa Tanaka, Ryosuke Iijima
  • Patent number: 10243038
    Abstract: According to one embodiment, a semiconductor device includes a first conductive portion, a semiconductor portion including silicon carbide, and a first insulating portion. The semiconductor portion includes first to fourth semiconductor regions. The first semiconductor region includes first and second partial regions. The third semiconductor region is provided between the second partial region and the second semiconductor region. The fourth semiconductor region is provided between the first conductive portion and the first partial region. The first insulating portion includes first to third portions. A portion of the first portion is positioned between the first conductive portion and the fourth semiconductor region. The second portion is positioned between the second semiconductor region and the portion of the first conductive portion and between the first conductive portion and the third semiconductor region. The third portion is provided between the first and second portions.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: March 26, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhisa Tanaka, Ryosuke Iijima, Shinya Kyogoku, Shinsuke Harada
  • Patent number: 9853274
    Abstract: A solid battery has a first electrode layer, second electrode layer, and solid electrolyte layer disposed therebetween. A first insulating layer is disposed on an outer perimeter of the first electrode layer; a lamination face of the first electrode layer taking a lamination direction of the first electrode layer, the solid electrolyte layer, and the second electrode layer as a normal direction is smaller than that of the solid electrolyte layer; from the lamination direction, an outer edge of the solid electrolyte layer is positioned on the first electrode layer outer perimeter and an outer edge of the first insulating layer is positioned on an outer perimeter of the solid electrolyte layer; and the first electrode layer, the first insulating layer, and the solid electrolyte layer are disposed such that the outer edge of the first insulating layer and an end of the solid electrolyte layer contact each other.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 26, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Katsuhisa Tanaka
  • Patent number: 9419280
    Abstract: A cathode active material of the present invention is a cathode active material having a composition represented by General Formula (1) below, LiFe1?xMxP1?ySiyO4??(1), where: an average valence of Fe is +2 or more; M is an element having a valence of +2 or more and is at least one type of element selected from the group consisting of Zr, Sn, Y, and Al; the valence of M is different from the average valence of Fe; 0<x?0.5; and y=x×({valence of M}?2)+(1?x)×({average valence of Fe}?2). This provides a cathode active material that not only excels in terms of safety and cost but also can provide a long-life battery.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 16, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima, Toshitsugu Sueki, Shogo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Patent number: 9373844
    Abstract: A positive electrode active substance including a lithium-containing metal oxide represented by the following general formula (1): LiFe1-xMxP1-ySiyO4??(1) wherein M represents an element selected from Sn, Zr, Y, and Al; 0<x<1; and 0<y<1, wherein the lithium-containing metal oxide has a lattice constant and a half value width of a diffraction peak of a (011) plane.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: June 21, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima, Toshitsugu Sueki, Shougo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Patent number: 9350022
    Abstract: A cathode active material of the present invention is a cathode active material having a composition represented by General Formula (1) below, LiFe1-xMxP1-ySiyO4??(1), where: an average valence of Fe is +2 or more; M is an element having a valence of +2 or more and is at least one type of element selected from the group consisting of Zr, Sn, Y, and Al; the valence of M is different from the average valence of Fe; 0<x?0.5; and y=x×({valence of M}?2)+(1?x)×({average valence of Fe}?2). This provides a cathode active material that not only excels in terms of safety and cost but also can provide a long-life battery.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 24, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima, Toshitsugu Sueki, Shogo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Patent number: 9337489
    Abstract: A cathode active material of the present invention is a cathode active material having a composition represented by General Formula (1) below, LiFe1?xMxP1?ySiyO4??(1), where: an average valence of Fe is +2 or more; M is an element having a valence of +2 or more and is at least one type of element selected from the group consisting of Zr, Sn, Y, and Al; the valence of M is different from the average valence of Fe; 0<x?0.5; and y=x×({valence of M}?2)+(1?x)×({average valence of Fe}?2). This provides a cathode active material that not only excels in terms of safety and cost but also can provide a long-life battery.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: May 10, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima, Toshitsugu Sueki, Shogo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Patent number: 9293234
    Abstract: Provided is a positive electrode active material giving nonaqueous-electrolyte secondary batteries superior in cycle characteristics. The positive electrode active material according to the present invention includes a lithium-containing composite metal oxide having the composition represented by the following General Formula (1): LizFe1-xMxP1-ySiyO4??(1) (wherein M is at least one metal element selected from Zr, Sn, Y, and Al, 0.05<x<1, and 0.05<y<1), characterized in that: the positive electrode active material is in the single crystalline phase of the lithium-containing composite oxide represented by General Formula (1) when 1>z>0.9 to 0.75 or 0.25 to 0.1>z>0; the positive electrode active material has two crystalline phases of the lithium-containing composite oxides represented by the following General Formulae (2) and (3) when 0.9 to 0.75>z>0.25 to 0.1: LiaFe1-xMxP1-ySiyO4??(2) (wherein 0.75 to 0.9?a?1.00, 0.05<x<1, and 0.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 22, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Motoaki Nishijima, Koji Ohira, Toshitsugu Sueki, Shougo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai