Patents by Inventor Katsuko Yamamoto

Katsuko Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190293536
    Abstract: An indenter is made of polycrystalline diamond and has a tip having a spherical surface with a radius of 10 to 2000 ?m.
    Type: Application
    Filed: March 29, 2018
    Publication date: September 26, 2019
    Inventors: Kensei Hamaki, Katsuko Yamamoto, Hitoshi Sumiya, Yuh Ishida
  • Patent number: 10421129
    Abstract: A polycrystalline diamond body contains diamond particles, the diamond particles have a mean particle size of 50 nm or less, and a crack initiation load is 10 N or more as measured in a fracture strength test by pressing a diamond indenter D with a tip radius Dr of 50 ?m against a surface of the polycrystalline diamond body at a load rate F of 100 N/min. Accordingly, a polycrystalline diamond body that is tough and has a small diamond particle size, a cutting tool, a wear-resistant tool, a grinding tool, and a method for producing the polycrystalline diamond body are provided.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 24, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yuh Ishida, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya
  • Publication number: 20180265416
    Abstract: It is an object to provide a cubic boron nitride polycrystalline material excellent in toughness. A cubic boron nitride polycrystalline material containing fine cubic boron nitride which is granular, has a maximum grain size not greater than 100 nm, and has an average grain size not greater than 70 nm and at least one of plate-shaped cubic boron nitride in a form of a plate having an average major radius not smaller than 50 nm and not greater than 10000 nm and coarse cubic boron nitride which is granular, has a minimum grain size exceeding 100 nm, and has an average grain size not greater than 1000 nm is provided.
    Type: Application
    Filed: January 13, 2016
    Publication date: September 20, 2018
    Inventors: Yuh Ishida, Katsuko Yamamoto, Hitoshi Sumiya
  • Publication number: 20180257992
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Publication number: 20180141818
    Abstract: The present diamond single crystal is a diamond single crystal containing nitrogen atoms, in which a concentration of the nitrogen atoms changes periodically along a crystal orientation of the diamond single crystal, and an arithmetic average value Aave, a maximum value Amax, and a minimum value Amin of the distance of one period along the crystal orientation satisfy the relationship expressed by the following equation (I): (Amax)/1.25?(Aave)?(Amin)/0.75??(I).
    Type: Application
    Filed: June 1, 2016
    Publication date: May 24, 2018
    Inventors: Katsuko Yamamoto, Keiko Arimoto, Hitoshi Sumiya
  • Publication number: 20180079010
    Abstract: A polycrystalline diamond body contains diamond particles, the diamond particles have a mean particle size of 50 nm or less, and a crack initiation load is 10 N or more as measured in a fracture strength test by pressing a diamond indenter D with a tip radius Dr of 50 ?m against a surface of the polycrystalline diamond body at a load rate F of 100 N/min. Accordingly, a polycrystalline diamond body that is tough and has a small diamond particle size, a cutting tool, a wear-resistant tool, a grinding tool, and a method for producing the polycrystalline diamond body are provided.
    Type: Application
    Filed: January 20, 2016
    Publication date: March 22, 2018
    Inventors: Yuh Ishida, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya
  • Publication number: 20180029942
    Abstract: A cubic boron nitride polycrystal includes cubic boron nitride, the cubic boron nitride having an average grain size of not more than 150 nm, the cubic boron nitride polycrystal having a crack generation load of not less than 25 N in a breaking strength test in which an R200 ?m diamond indenter is used to apply a load at a rate of 100 N/min.
    Type: Application
    Filed: January 18, 2016
    Publication date: February 1, 2018
    Inventors: Yuh Ishida, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya
  • Patent number: 9878956
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 30, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Patent number: 9878914
    Abstract: Nano polycrystalline diamond is composed of carbon and a plurality of impurities other than carbon. A concentration of each of the plurality of impurities is not higher than 0.01 mass %, and the nano polycrystalline diamond has a crystal grain size (a maximum length) not greater than 500 nm. The nano polycrystalline diamond can be fabricated by preparing graphite in which a concentration of an impurity is not higher than 0.01 mass % and converting graphite to diamond by applying an ultra-high pressure and a high temperature to graphite.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 30, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Katsuko Yamamoto, Hitoshi Sumiya
  • Patent number: 9850135
    Abstract: Nano polycrystalline diamond is composed of carbon and a plurality of impurities other than carbon. A concentration of each of the plurality of impurities is not higher than 0.01 mass %, and the nano polycrystalline diamond has a crystal grain size (a maximum length) not greater than 500 nm. The nano polycrystalline diamond can be fabricated by preparing graphite in which a concentration of an impurity is not higher than 0.01 mass % and converting graphite to diamond by applying an ultra-high pressure and a high temperature to graphite.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 26, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya
  • Patent number: 9714197
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: July 25, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Patent number: 9663371
    Abstract: A polycrystalline diamond body contains diamond particles. The diamond particles have a mean particle size of 50 nm or less. As a result of measurement of a knoop hardness under a test load of 4.9 N at 23° C.±5° C., the polycrystalline diamond body has a ratio of a length B of a shorter diagonal line with respect to a length A of a longer diagonal line of diagonal lines of a knoop indentation, expressed as a B/A ratio, of 0.080 or less. This polycrystalline diamond body is tough and has a small particle size.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 30, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yuh Ishida, Katsuko Yamamoto, Hitoshi Sumiya
  • Patent number: 9630853
    Abstract: An object is to provide polycrystalline diamond applicable to diverse applications; and a water jet orifice, a stylus for gravure printing, a scriber, a diamond cutting tool, and a scribing wheel that include such polycrystalline diamond. This object is achieved by polycrystalline diamond obtained by converting and sintering non-diamond carbon under an ultrahigh pressure and at a high temperature without addition of a sintering aid or a catalyst, wherein sintered diamond grains constituting the polycrystalline diamond have an average grain diameter of more than 50 nm and less than 2500 nm and a purity of 99% or more, and the diamond has a D90 grain diameter of (average grain diameter+average grain diameter×0.9) or less.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 25, 2017
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Takeshi Sato, Katsuko Yamamoto, Naohiro Toda, Hitoshi Sumiya, Yutaka Kobayashi
  • Patent number: 9487447
    Abstract: Provided are a diamond polycrystalline body having a longer life than conventional diamond polycrystalline bodies when it is slid, a method for manufacturing the same, and a tool. In a diamond polycrystalline body, at least one element whose oxide has a melting point of less than or equal to 1000° C. is added thereto, and crystal grains have an average grain size of less than or equal to 500 nm. Thereby, wear of diamond can be suppressed, and the diamond polycrystalline body can have a longer life when it is slid.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: November 8, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Sato, Katsuko Yamamoto, Kazuhiro Ikeda, Hitoshi Sumiya
  • Patent number: 9487446
    Abstract: Provided are a diamond polycrystalline body having a longer life than conventional diamond polycrystalline bodies when it is slid, a method for manufacturing the same, and a tool. In a diamond polycrystalline body, at least one element whose sulfide or chloride has a melting point of less than or equal to 1000° C. is added thereto, and crystal grains have an average grain size of less than or equal to 500 nm. Thereby, wear of diamond can be suppressed, and the diamond polycrystalline body can have a longer life when it is slid.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: November 8, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Sato, Katsuko Yamamoto, Kazuhiro Ikeda, Hitoshi Sumiya
  • Publication number: 20160272546
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Publication number: 20160264422
    Abstract: Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.
    Type: Application
    Filed: May 24, 2016
    Publication date: September 15, 2016
    Inventors: Kazuhiro Ikeda, Keiko Arimoto, Katsuko Yamamoto, Hitoshi Sumiya, Takeshi Sato
  • Patent number: 9415466
    Abstract: Provided is a technology for manufacturing cutting tools that is capable of providing cutting tools that have a cut surface whose surface is uniformly smooth and that have a stable performance.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 16, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Kazuo Nakamae, Hiroyuki Murase, Katsuko Yamamoto, Mamoru Ono, Katsuyuki Tanaka, Toshimitsu Sakata, Teruhiro Enami, Yutaka Kobayashi
  • Publication number: 20160229696
    Abstract: Nano polycrystalline diamond is composed of carbon and a plurality of impurities other than carbon. A concentration of each of the plurality of impurities is not higher than 0.01 mass %, and the nano polycrystalline diamond has a crystal grain size (a maximum length) not greater than 500 nm. The nano polycrystalline diamond can be fabricated by preparing graphite in which a concentration of an impurity is not higher than 0.01 mass % and converting graphite to diamond by applying an ultra-high pressure and a high temperature to graphite.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Kazuhiro Ikeda, Katsuko Yamamoto, Hitoshi Sumiya
  • Patent number: 9403215
    Abstract: The present invention provides a cutting tool that achieves cutting with high precision. The cutting tool of the present invention includes a cutting edge composed of a polycrystalline body including high-pressure-phase hard grains that contain one or more elements selected from the group consisting of boron, carbon, and nitrogen, the polycrystalline body being formed by subjecting a non-diamond carbon material and/or boron nitride, serving as a starting material, to direct conversion sintering under ultra-high pressure and high temperature without adding a sintering aid or a catalyst, in which letting the radius of curvature of the nose of the cutting edge of the cutting tool be R1, the sintered grains constituting the polycrystalline body have an average grain size of 1.2×R1 or less and a maximum grain size of 2×R1 or less.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: August 2, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Natsuo Tatsumi, Katsuko Yamamoto, Hitoshi Sumiya