Patents by Inventor Kazuhide Ino

Kazuhide Ino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936369
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: March 19, 2024
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Publication number: 20230268914
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 24, 2023
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Publication number: 20230268915
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 24, 2023
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Publication number: 20230261647
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Patent number: 11728801
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: August 15, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Publication number: 20220239289
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Patent number: 11336275
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: May 17, 2022
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Publication number: 20210028779
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: October 14, 2020
    Publication date: January 28, 2021
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Patent number: 10826481
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: November 3, 2020
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Publication number: 20190173461
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Patent number: 10263612
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: April 16, 2019
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Patent number: 9800239
    Abstract: Provided is an electronic circuit capable of preventing a switching device from breakage when a short-circuit occurs. When a gate control signal CG1 is inverted from an L level to an H level, a first switching circuit 32 selects a first input terminal a, and connects an output terminal d to the first input terminal a, whereby turning on a MOSFET 21. When a predetermined time Tx elapses after the output terminal d of the first switching circuit 32 is connected to the first input terminal a, a second switching circuit 34 selects a first input terminal e, and connects an output terminal g to the first input terminal e. Furthermore, immediately after the connection, the first switching circuit 32 selects a second input terminal b, and connects the output terminal d to the second input terminal b. Consequently, immediately after the MOSFET 21 is turned on, a gate resistor is switched from a first gate resistor 33 having a small resistance value to a second gate resistor 35 having a large resistance value.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: October 24, 2017
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Publication number: 20160294379
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Application
    Filed: November 18, 2014
    Publication date: October 6, 2016
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Patent number: 9461533
    Abstract: When an overcurrent is detected by an overcurrent detecting circuit (36), a first switch circuit (32) selects a second input terminal (b) and connects an output terminal (c) to the second input terminal (b), with the result that the output terminal (c) of the first switch circuit (32) is put into a high-impedance state. The second switch circuit (34) selects a second output terminal (f) and connects an input terminal (d) to the second output terminal (f), with the result that the input terminal (d) of the second switch circuit (34) is grounded. That is, the gate of a first MOSFET (21) is grounded via a current interrupting resistor (35).
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: October 4, 2016
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Mineo Miura, Kazuhide Ino
  • Publication number: 20160112043
    Abstract: Provided is an electronic circuit capable of preventing a switching device from breakage when a short-circuit occurs. When a gate control signal CG1 is inverted from an L level to an H level, a first switching circuit 32 selects a first input terminal a, and connects an output terminal d to the first input terminal a, whereby turning on a MOSFET 21. When a predetermined time Tx elapses after the output terminal d of the first switching circuit 32 is connected to the first input terminal a, a second switching circuit 34 selects a first input terminal e, and connects an output terminal g to the first input terminal e. Furthermore, immediately after the connection, the first switching circuit 32 selects a second input terminal b, and connects the output terminal d to the second input terminal b. Consequently, immediately after the MOSFET 21 is turned on, a gate resistor is switched from a first gate resistor 33 having a small resistance value to a second gate resistor 35 having a large resistance value.
    Type: Application
    Filed: June 10, 2014
    Publication date: April 21, 2016
    Inventors: Masashi HAYASHIGUCHI, Kazuhide INO
  • Publication number: 20150311779
    Abstract: When an overcurrent is detected by an overcurrent detecting circuit (36), a first switch circuit (32) selects a second input terminal (b) and connects an output terminal (c) to the second input terminal (b), with the result that the output terminal (c) of the first switch circuit (32) is put into a high-impedance state. The second switch circuit (34) selects a second output terminal (f) and connects an input terminal (d) to the second output terminal (f), with the result that the input terminal (d) of the second switch circuit (34) is grounded. That is, the gate of a first MOSFET (21) is grounded via a current interrupting resistor (35).
    Type: Application
    Filed: October 30, 2013
    Publication date: October 29, 2015
    Inventors: Masashi HAYASHIGUCHI, Mineo MIURA, Kazuhide INO
  • Patent number: 8741779
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 3, 2014
    Assignees: ROHM Co., Ltd.
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Publication number: 20130302918
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Tadahiro OHMI, Kazuhide Ino, Takahiro Arakawa
  • Patent number: 8513137
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 20, 2013
    Assignees: Rohm Co., Ltd., Tadahiro Ohmi
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Publication number: 20130017686
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: ROHM CO., LTD.
    Inventors: Tadahiro OHMI, Kazuhide INO, Takahiro ARAKAWA