Patents by Inventor Kazuhisa Yamamura

Kazuhisa Yamamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8564087
    Abstract: A semiconductor substrate 2 is dry etched before an insulating layer 4 is exposed, whereby a hole H1 penetrating through the semiconductor substrate 2 and reaching the insulating layer 4 is formed at a position corresponding to a photosensitive region S1. Next, an irregular asperity 22 is formed in a surface 7 of an n+ type embedded layer 6 exposed in the hole H1. The surface of the n+ type embedded layer 6 exposed in the hole H1 through the insulating layer 4 is irradiated with a picosecond to femtosecond pulsed laser beam, whereby the insulating layer 4 is removed and the surface 7 of the n+ type embedded layer 6 exposed in the hole H1 is roughened by the picosecond to femtosecond pulsed laser beam, to form the irregular asperity 22 in the entire area of the surface 7. Then the substrate with the irregular asperity 22 therein is subjected to a thermal treatment.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano
  • Publication number: 20130270666
    Abstract: This photodiode array 10 includes quenching resistors 7 which are connected in series to respective avalanche photodiodes APDs, a peripheral wiring WL which surrounds a region in which the plurality of avalanche photodiodes APDs are formed, and a plurality of relay wirings 8 which are electrically connected to the peripheral wiring WL, so as to respectively connect at least two places of the peripheral wiring WL. One of an anode and a cathode of each avalanche photodiode APD is electrically connected to any one of the relay wirings 8 via the quenching resistor 7, and the other of the anode and the cathode of each avalanche photodiode APD is electrically connected to another electrode 6 provided on a semiconductor substrate.
    Type: Application
    Filed: October 24, 2011
    Publication date: October 17, 2013
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kenichi Sato, Kazuhisa Yamamura, Shinji Ohsuka
  • Publication number: 20120061785
    Abstract: A photodiode PD1 is provided with an n? type semiconductor substrate 1 with a pn junction formed of a first conductivity type semiconductor region and a second conductivity type semiconductor region. For the n? type semiconductor substrate 1, an accumulation layer 7 is formed on the second principal surface 1b side of the n? type semiconductor substrate 1 and an irregular asperity 10 is formed at least in regions opposed to the pn junction in a first principal surface 1a and in the second principal surface 1b. The regions opposed to the pn junction in the first principal surface 1a and in the second principal surface 1b of the n? type semiconductor substrate 1 are optically exposed.
    Type: Application
    Filed: June 2, 2010
    Publication date: March 15, 2012
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshitaka Ishikawa, Akira Sakamoto, Kazuhisa Yamamura, Satoshi Kawai
  • Publication number: 20110303999
    Abstract: Prepared is an n? type semiconductor substrate 1 having a first principal surface 1a and a second principal surface 1b opposed to each other, and having a p+ type semiconductor region 3 formed on the first principal surface 1a side. At least a region opposed to the p+ type semiconductor region 3 in the second principal surface 1b of the n? type semiconductor substrate 1 is irradiated with a pulsed laser beam to form an irregular asperity 10. After formation of the irregular asperity 10, an accumulation layer 11 with an impurity concentration higher than that of the n? type semiconductor substrate 1 is formed on the second principal surface 1b side of the n? type semiconductor substrate 1. After formation of the accumulation layer 11, the n? type semiconductor substrate 1 is subjected to a thermal treatment.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 15, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Akira Sakamoto, Takashi Iida, Koei Yamamoto, Kazuhisa Yamamura, Terumasa Nagano
  • Publication number: 20110298076
    Abstract: A p? type semiconductor substrate 20 has a first principal surface 20a and a second principal surface 20b opposed to each other and includes a photosensitive region 21. The photosensitive region 21 is composed of an n+ type impurity region 23, a p+ type impurity region 25, and a region to be depleted with application of a bias voltage in the p? type semiconductor substrate 20. An irregular asperity 10 is formed in the second principal surface 20b of the p? type semiconductor substrate 20. An accumulation layer 37 is formed on the second principal surface 20b side of the p? type semiconductor substrate 20 and a region in the accumulation layer 37 opposed to the photosensitive region 21 is optically exposed.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 8, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano, Yoshitaka Ishikawa, Satoshi Kawai
  • Publication number: 20110291218
    Abstract: A photodiode array PDA1 is provided with a substrate S wherein a plurality of photodetecting channels CH have an n-type semiconductor layer 32. The photodiode array PDA1 is provided with a p? type semiconductor layer 33 formed on the n-type semiconductor layer 32, resistors 24 provided for the respective photodetecting channels CH and each having one end portion connected to a signal conducting wire 23, and an n-type separating portion 40 formed between the plurality of photodetecting channels CR The p? type semiconductor layer 33 forms pn junctions at an interface to the n-type semiconductor layer 32 and has a plurality of multiplication regions AM for avalanche multiplication of carriers generated with incidence of detection target light, corresponding to the respective photodetecting channels. An irregular asperity 10 is formed in a surface of the n-type semiconductor layer 32 and the surface is optically exposed.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 1, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano, Yoshitaka Ishikawa, Satoshi Kawai
  • Publication number: 20110291213
    Abstract: A semiconductor substrate 2 is dry etched before an insulating layer 4 is exposed, whereby a hole H1 penetrating through the semiconductor substrate 2 and reaching the insulating layer 4 is formed at a position corresponding to a photosensitive region S1. Next, an irregular asperity 22 is formed in a surface 7 of an n+ type embedded layer 6 exposed in the hole H1. The surface of the n+ type embedded layer 6 exposed in the hole H1 through the insulating layer 4 is irradiated with a picosecond to femtosecond pulsed laser beam, whereby the insulating layer 4 is removed and the surface 7 of the n+ type embedded layer 6 exposed in the hole H1 is roughened by the picosecond to femtosecond pulsed laser beam, to form the irregular asperity 22 in the entire area of the surface 7. Then the substrate with the irregular asperity 22 therein is subjected to a thermal treatment.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 1, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano
  • Publication number: 20110266644
    Abstract: A semiconductor photodetection element SP has a silicon substrate 21 comprised of a semiconductor of a first conductivity type, having a first principal surface 21a and a second principal surface 21b opposed to each other, and having a semiconductor layer 23 of a second conductivity type formed on the first principal surface 21a side; and charge transfer electrodes 25 provided on the first principal surface 21a and adapted to transfer generated charge. In the silicon substrate 21, an accumulation layer 31 of the first conductivity type having a higher impurity concentration than the silicon substrate 21 is formed on the second principal surface 21b side and an irregular asperity 10 is formed in a region opposed to at least the semiconductor region 23, in the second principal surface 21b. The region where the irregular asperity 10 is formed in the second principal surface 21b of the silicon substrate 21 is optically exposed.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 3, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano, Yasuhito Miyazaki, Yasuhito Yoneta, Hisanori Suzuki, Masaharu Muramatsu
  • Publication number: 20110227183
    Abstract: A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p?-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p?-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 22, 2011
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Patent number: 8008741
    Abstract: A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p?-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p?-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 30, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Publication number: 20090256223
    Abstract: A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p?-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p?-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Application
    Filed: July 3, 2007
    Publication date: October 15, 2009
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Publication number: 20080148375
    Abstract: An authentication system comprising: a terminal device 100 that includes a biometric information generating portion 160 generating biometric information that does not fluctuate across individual measurements, input unit 172 for inputting a password, specific code generating unit for generating a specific code unique to each combination of the biometric information and the additional information, and communication module 140 for sending the specific code to a server; and a server 200 that includes communication module 240 for receiving the specific code, storage 230 for associating and storing an identifying code and an account, search module for searching for an identifying code matching the specific code, and account specifying module for specifying an account matching the identifying code retrieved by the search module.
    Type: Application
    Filed: November 27, 2007
    Publication date: June 19, 2008
    Inventors: Yasuhiro Yamamoto, Kazuhisa Yamamura