Patents by Inventor Kazuki Negishi

Kazuki Negishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11874301
    Abstract: Probe systems including imaging devices with objective lens isolators and related methods are disclosed herein. A probe system includes an enclosure with an enclosure volume for enclosing a substrate that includes one or more devices under test (DUTs), a testing assembly, and an imaging device. The imaging device includes an imaging device objective lens, an imaging device body, and an objective lens isolator. In examples, the probe system includes an electrical grounding assembly configured to restrict electromagnetic noise from entering the enclosure volume. In examples, methods of preparing the imaging device include assembling the imaging device such that the imaging device objective lens is at least partially electrically isolated from the imaging device body. In some examples, utilizing the probe system includes testing the one or more DUTs while restricting electrical noise from propagating from the imaging device to the substrate.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 16, 2024
    Assignee: FormFactor, Inc.
    Inventors: Kazuki Negishi, Yu-Wen Huang, Gerald Lee Gisler, Eric Robert Christenson, Michael E. Simmons
  • Patent number: 11346883
    Abstract: Probe systems and methods for testing a device under test are disclosed herein. The probe systems include an electrically conductive ground loop and a structure that is electrically connected to a ground potential via at least a region of the electrically conductive ground loop. The probe systems also include nonlinear circuitry. The nonlinear circuitry is configured to resist flow of electric current within the ground loop when a voltage differential across the nonlinear circuitry is less than a threshold voltage differential and permit flow of electric current within the ground loop when the voltage differential across the nonlinear circuitry is greater than the threshold voltage differential. The methods include positioning a device under test (DUT) within a probe system that includes an electrically conductive ground loop and nonlinear circuitry. The methods also include selectively resisting and permitting electric current flow within the ground loop and through the nonlinear circuitry.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: May 31, 2022
    Assignee: FormFactor, Inc.
    Inventor: Kazuki Negishi
  • Patent number: 11313936
    Abstract: Probe systems and methods of characterizing optical coupling between an optical probe of a probe system and a calibration structure. The probe systems include a probe assembly that includes an optical probe, a support surface configured to support a substrate, and a signal generation and analysis assembly configured to generate an optical signal and to provide the optical signal to the optical device via the optical probe. The probe systems also include an electrically actuated positioning assembly, a calibration structure configured to receive the optical signal, and an optical detector configured to detect a signal intensity of the optical signal. The probe systems further include a controller programmed to control the probe system to generate a representation of signal intensity as a function of the relative orientation between the optical probe and the calibration structure. The methods include methods of operating the probe systems.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: April 26, 2022
    Assignee: FormFactor, Inc.
    Inventors: Joseph George Frankel, Kazuki Negishi
  • Patent number: 11181550
    Abstract: Probe systems and methods including electric contact detection. The probe systems include a probe assembly and a chuck. The probe systems also include a translation structure configured to operatively translate the probe assembly and/or the chuck and an instrumentation package configured to detect contact between the probe system and a device under test (DUT) and to test operation of the DUT. The instrumentation package includes a continuity detection circuit, a test circuit, and a translation structure control circuit. The continuity detection circuit is configured to detect electrical continuity between a first probe electrical conductor and a second probe electrical conductor. The test circuit is configured to electrically test the DUT. The translation structure control circuit is configured to control the operation of the translation structure. The methods include monitoring continuity between a first probe and a second probe and controlling the operation of a probe system based upon the monitoring.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: November 23, 2021
    Assignee: FormFactor, lnc.
    Inventors: Sia Choon Beng, Kazuki Negishi
  • Patent number: 11131709
    Abstract: Probe systems for optically probing a device under test (DUT) and methods of operating the probe systems. The probe systems include a probing assembly that includes an optical probe that defines a probe tip and a distance sensor. The probe systems also include a support surface configured to support a substrate, which defines a substrate surface and includes an optical device positioned below the substrate surface. The probe systems further include a positioning assembly configured to selectively regulate a relative orientation between the probing assembly and the DUT. The probe systems also include a controller programmed to control the operation of the probe systems. The methods include methods of operating the probe systems.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: September 28, 2021
    Assignee: FormFactor, Inc.
    Inventors: Joseph George Frankel, Kazuki Negishi, Michael E. Simmons, Eric Robert Christenson, Daniel Rishavy
  • Patent number: 11047795
    Abstract: Calibration chucks for optical probe systems, optical probe systems including the calibration chucks, and methods of utilizing the optical probe systems. The calibration chucks include a calibration chuck body that defines a calibration chuck support surface. The calibration chucks also include at least one optical calibration structure that is supported by the calibration chuck body. The at least one optical calibration structure includes a horizontal viewing structure. The horizontal viewing structure is configured to facilitate viewing of a horizontally viewed region from a horizontal viewing direction that is at least substantially parallel to the calibration chuck support surface. The horizontal viewing structure also is configured to facilitate viewing of the horizontally viewed region via an imaging device of the optical probe system that is positioned vertically above the calibration chuck support surface.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 29, 2021
    Assignee: FormFactor, Inc.
    Inventors: Kazuki Negishi, Michael E. Simmons, Christopher Anthony Storm, Joseph George Frankel, Eric Robert Christenson, Mario René Berg
  • Publication number: 20210132115
    Abstract: Probe systems including imaging devices with objective lens isolators and related methods are disclosed herein. A probe system includes an enclosure with an enclosure volume for enclosing a substrate that includes one or more devices under test (DUTs), a testing assembly, and an imaging device. The imaging device includes an imaging device objective lens, an imaging device body, and an objective lens isolator. In examples, the probe system includes an electrical grounding assembly configured to restrict electromagnetic noise from entering the enclosure volume. In examples, methods of preparing the imaging device include assembling the imaging device such that the imaging device objective lens is at least partially electrically isolated from the imaging device body. In some examples, utilizing the probe system includes testing the one or more DUTs while restricting electrical noise from propagating from the imaging device to the substrate.
    Type: Application
    Filed: October 23, 2020
    Publication date: May 6, 2021
    Inventors: Kazuki Negishi, Yu-Wen Huang, Gerald Lee Gisler, Eric Robert Christenson, Michael E. Simmons
  • Publication number: 20210132145
    Abstract: Probe systems and methods for testing a device under test are disclosed herein. The probe systems include an electrically conductive ground loop and a structure that is electrically connected to a ground potential via at least a region of the electrically conductive ground loop. The probe systems also include nonlinear circuitry. The nonlinear circuitry is configured to resist flow of electric current within the ground loop when a voltage differential across the nonlinear circuitry is less than a threshold voltage differential and permit flow of electric current within the ground loop when the voltage differential across the nonlinear circuitry is greater than the threshold voltage differential. The methods include positioning a device under test (DUT) within a probe system that includes an electrically conductive ground loop and nonlinear circuitry. The methods also include selectively resisting and permitting electric current flow within the ground loop and through the nonlinear circuitry.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 6, 2021
    Inventor: Kazuki Negishi
  • Publication number: 20210096176
    Abstract: Probe systems for optically probing a device under test (DUT) and methods of operating the probe systems. The probe systems include a probing assembly that includes an optical probe that defines a probe tip and a distance sensor. The probe systems also include a support surface configured to support a substrate, which defines a substrate surface and includes an optical device positioned below the substrate surface. The probe systems further include a positioning assembly configured to selectively regulate a relative orientation between the probing assembly and the DUT. The probe systems also include a controller programmed to control the operation of the probe systems. The methods include methods of operating the probe systems.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 1, 2021
    Inventors: Joseph George Frankel, Kazuki Negishi, Michael E. Simmons, Eric Robert Christenson, Daniel Rishavy
  • Publication number: 20210096206
    Abstract: Probe systems and methods of characterizing optical coupling between an optical probe of a probe system and a calibration structure. The probe systems include a probe assembly that includes an optical probe, a support surface configured to support a substrate, and a signal generation and analysis assembly configured to generate an optical signal and to provide the optical signal to the optical device via the optical probe. The probe systems also include an electrically actuated positioning assembly, a calibration structure configured to receive the optical signal, and an optical detector configured to detect a signal intensity of the optical signal. The probe systems further include a controller programmed to control the probe system to generate a representation of signal intensity as a function of the relative orientation between the optical probe and the calibration structure. The methods include methods of operating the probe systems.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 1, 2021
    Inventors: Joseph George Frankel, Kazuki Negishi
  • Patent number: 10877070
    Abstract: Probes with fiducial targets, probe systems including the same, and associated methods. The probes include a probe body, a probe beam, a probe tip configured to contact a device under test (DUT), and a fiducial target affixed to the probe beam. The fiducial target is configured to be visible to an optical system to determine a position of the probe tip relative to the DUT. The methods include methods of utilizing and/or manufacturing the probes.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: December 29, 2020
    Assignee: FormFactor Beaverton, Inc.
    Inventors: Joseph George Frankel, Koby L. Duckworth, Kazuki Negishi
  • Publication number: 20200378888
    Abstract: Calibration chucks for optical probe systems, optical probe systems including the calibration chucks, and methods of utilizing the optical probe systems. The calibration chucks include a calibration chuck body that defines a calibration chuck support surface. The calibration chucks also include at least one optical calibration structure that is supported by the calibration chuck body. The at least one optical calibration structure includes a horizontal viewing structure. The horizontal viewing structure is configured to facilitate viewing of a horizontally viewed region from a horizontal viewing direction that is at least substantially parallel to the calibration chuck support surface. The horizontal viewing structure also is configured to facilitate viewing of the horizontally viewed region via an imaging device of the optical probe system that is positioned vertically above the calibration chuck support surface.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Kazuki Negishi, Michael E. Simmons, Christopher Anthony Storm, Joseph George Frankel, Eric Robert Christenson, Mario René Berg
  • Patent number: 10809048
    Abstract: Probe systems and methods for calibrating capacitive height sensing measurements. A probe system includes a probe assembly with a probe support body that supports a capacitive displacement sensor that terminates in a sensing tip relative to a substrate and that is configured to generate an uncalibrated capacitive height measurement. A method of utilizing the probe system to generate a calibrated capacitive height measurement includes receiving a height calibration structure architecture; calculating a layer impedance magnitude of each substrate layer of the height calibration structure; and calculating a total layer impedance magnitude of the height calibration structure. The method further includes measuring a measured impedance magnitude and calculating the calibrated capacitive height measurement.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 20, 2020
    Assignee: FormFactor Beaverton, Inc.
    Inventors: Kazuki Negishi, Joseph George Frankel, Eric Robert Christenson
  • Publication number: 20200217638
    Abstract: Probe systems and methods for calibrating capacitive height sensing measurements. A probe system includes a probe assembly with a probe support body that supports a capacitive displacement sensor that terminates in a sensing tip relative to a substrate and that is configured to generate an uncalibrated capacitive height measurement. A method of utilizing the probe system to generate a calibrated capacitive height measurement includes receiving a height calibration structure architecture; calculating a layer impedance magnitude of each substrate layer of the height calibration structure; and calculating a total layer impedance magnitude of the height calibration structure. The method further includes measuring a measured impedance magnitude and calculating the calibrated capacitive height measurement.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 9, 2020
    Inventors: Kazuki Negishi, Joseph George Frankel, Eric Robert Christenson
  • Patent number: 10698002
    Abstract: Probe systems for testing a device under test are disclosed herein. The probe systems include a platen that defines an upper surface, an opposed lower surface, and a platen aperture. The probe systems also include a chuck that defines a support surface configured to support a device under test. The probe systems further include a lower enclosure extending from the lower surface of the platen and an upper enclosure extending from the upper surface of the platen. The upper enclosure includes a side wall that defines a side wall aperture, and the side wall and the platen define an intersection angle of at least 30 degrees and at most 60 degrees. The probe systems also include a manipulator, a probe shaft arm, a probe assembly, a test head, and an electrical conductor.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 30, 2020
    Assignee: FormFactor Beaverton, Inc.
    Inventors: Christopher Storm, Michael E. Simmons, Bryan Conrad Bolt, Gavin Neil Fisher, Anthony Lord, Kazuki Negishi
  • Publication number: 20190277885
    Abstract: Probe systems and methods including electric contact detection. The probe systems include a probe assembly and a chuck. The probe systems also include a translation structure configured to operatively translate the probe assembly and/or the chuck and an instrumentation package configured to detect contact between the probe system and a device under test (DUT) and to test operation of the DUT. The instrumentation package includes a continuity detection circuit, a test circuit, and a translation structure control circuit. The continuity detection circuit is configured to detect electrical continuity between a first probe electrical conductor and a second probe electrical conductor. The test circuit is configured to electrically test the DUT. The translation structure control circuit is configured to control the operation of the translation structure. The methods include monitoring continuity between a first probe and a second probe and controlling the operation of a probe system based upon the monitoring.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Inventors: Sia Choon Beng, Kazuki Negishi
  • Publication number: 20190227102
    Abstract: Probes with fiducial targets, probe systems including the same, and associated methods. The probes include a probe body, a probe beam, a probe tip configured to contact a device under test (DUT), and a fiducial target affixed to the probe beam. The fiducial target is configured to be visible to an optical system to determine a position of the probe tip relative to the DUT. The methods include methods of utilizing and/or manufacturing the probes.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 25, 2019
    Inventors: Joseph George Frankel, Koby L. Duckworth, Kazuki Negishi
  • Patent number: 10330703
    Abstract: Probe systems and methods including electric contact detection. The probe systems include a probe assembly and a chuck. The probe systems also include a translation structure configured to operatively translate the probe assembly and/or the chuck and an instrumentation package configured to detect contact between the probe system and a device under test (DUT) and to test operation of the DUT. The instrumentation package includes a continuity detection circuit, a test circuit, and a translation structure control circuit. The continuity detection circuit is configured to detect electrical continuity between a first probe electrical conductor and a second probe electrical conductor. The test circuit is configured to electrically test the DUT. The translation structure control circuit is configured to control the operation of the translation structure. The methods include monitoring continuity between a first probe and a second probe and controlling the operation of a probe system based upon the monitoring.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: June 25, 2019
    Assignee: FormFactor Beaverton, Inc.
    Inventors: Sia Choon Beng, Kazuki Negishi
  • Patent number: 10281518
    Abstract: Systems and methods for on-wafer dynamic testing of electronic devices. The systems include a probe head assembly, a probe-side contacting structure, a chuck, and a chuck-side contacting structure. The probe head assembly includes a probe configured to electrically contact a first side of a device under test (DUT). The probe-side contacting structure includes a probe-side contacting region. The chuck includes an electrically conductive support surface configured to support a substrate that includes the DUT and to electrically contact a second side of the DUT. The probe head assembly and the chuck are configured to translate relative to one another to selectively establish electrical contact between the probe and the DUT. The chuck-side contacting structure includes a chuck-side contacting region that is in electrical communication with the electrically conductive support surface and opposed to the probe-side contacting structure. The methods may include methods of operating the system or systems.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: May 7, 2019
    Assignee: FormFactor Beaverton, Inc.
    Inventors: Kazuki Negishi, Eric Hill
  • Publication number: 20190101567
    Abstract: Probe systems for testing a device under test are disclosed herein. The probe systems include a platen that defines an upper surface, an opposed lower surface, and a platen aperture. The probe systems also include a chuck that defines a support surface configured to support a device under test. The probe systems further include a lower enclosure extending from the lower surface of the platen and an upper enclosure extending from the upper surface of the platen. The upper enclosure includes a side wall that defines a side wall aperture, and the side wall and the platen define an intersection angle of at least 30 degrees and at most 60 degrees. The probe systems also include a manipulator, a probe shaft arm, a probe assembly, a test head, and an electrical conductor.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 4, 2019
    Inventors: Christopher Storm, Michael E. Simmons, Bryan Conrad Bolt, Gavin Neil Fisher, Anthony Lord, Kazuki Negishi