Patents by Inventor Kazuki Ota

Kazuki Ota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110278586
    Abstract: A bipolar transistor is provided with an emitter layer, a base layer and a collector layer. The emitter layer is formed above a substrate and is an n-type conductive layer including a first nitride semiconductor. The base layer is formed on the emitter layer and is a p-type conductive including a second nitride semiconductor. The collector layer is formed on the base layer and includes a third nitride semiconductor. The collector layer, the base layer and the emitter layer are formed such that a crystal growth direction to the substrate surface is parallel to a substrate direction of [000-1]. The third nitride semiconductor contains InycAlxcGa1-xc-ycN (0•xc•1, 0•yc•1, 0<xc+yc•1). The a-axis length on the side of a surface in the third nitride semiconductor is shorter than the a-axis length on the side of the substrate.
    Type: Application
    Filed: October 16, 2009
    Publication date: November 17, 2011
    Inventors: Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama, Yasuhiro Okamoto, Takashi Inoue, Kazuki Ota
  • Publication number: 20110260217
    Abstract: There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
    Type: Application
    Filed: December 11, 2009
    Publication date: October 27, 2011
    Inventors: Yasuhiro Okamoto, Yuji Ando, Tatsuo Nakayama, Kazuki Ota, Takashi Inoue, Hironobu Miyamoto, Kazuomi Endo
  • Publication number: 20110241075
    Abstract: A bipolar transistor includes: a substrate; a collector and a base layer with a p-conductive-type, an emitter layer with an n-conductive-type. The collector layer is formed above the substrate and includes a first nitride semiconductor. The base layer with the p-conductive-type is formed on the collector layer and includes a second nit ride semiconductor. The emitter layer with the n-conductive-type is formed on the base layer and includes a third nitride semiconductor. The collector layer, the base layer and the emitter layer are formed so that crystal growing directions with respect to a surface of the substrate are in parallel to a [0001] direction of the substrate. The first nitride semiconductor includes: InycAlxcGa1-xc-ycN (0?xc?1, 0?yc?1, 0<xc+yc?1). In the first nitride semiconductor, a length of an a-axis on a surface side is longer than a length of an a-axis on a substrate side.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 6, 2011
    Inventors: Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama, Yasuhiro Okamoto, Takashi Inoue, Kazuki Ota
  • Publication number: 20110006345
    Abstract: A field effect transistor according to the present invention includes A field effect transistor, comprising: a nitride-based semiconductor multilayer structure, at least including, a drift layer formed of n-type or i-type AlxGa1-xN (0?X?0.
    Type: Application
    Filed: January 21, 2009
    Publication date: January 13, 2011
    Applicant: NEC CORPORATION
    Inventors: Kazuki Ota, Yasuhiro Okamoto
  • Publication number: 20110006346
    Abstract: The present invention provides a semiconductor device that has high electron mobility while reducing a gate leakage current, and superior uniformity and reproducibility of the threshold voltage, and is also applicable to the enhancement mode type.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 13, 2011
    Inventors: Yuji Ando, Yasuhiro Okamoto, Kazuki Ota, Takashi Inoue, Tatsuo Nakayama, Hironobu Miyamoto
  • Patent number: 7863648
    Abstract: A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0 ?Lol/Lg?1 holds.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 4, 2011
    Assignee: NEC Corporation
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20100327318
    Abstract: A semiconductor device capable of suppressing the occurrence of a punch-through phenomenon is provided. A first n-type conductive layer (2?) is formed on a substrate (1?). A p-type conductive layer (3?) is formed thereon. A second n-type conductive layer (4?) is formed thereon. On the under surface of the substrate (1?), there is a drain electrode (13?) connected to the first n-type conductive layer (2?). On the upper surface of the substrate (1?), there is a source electrode (11?) in ohmic contact with the second n-type conductive layer (4?), and a gate electrode (12?) in contact with the first n-type conductive layer (2?), p-type conductive layer (3?), the second n-type conductive layer (4?) through an insulation film (21?). The gate electrode (12?) and the source electrode (11?) are alternately arranged. The p-type conductive layer (3?) includes In.
    Type: Application
    Filed: March 23, 2009
    Publication date: December 30, 2010
    Applicant: NEC CORPORATION
    Inventors: Yasuhiro Okamoto, Kazuki Ota, Takashi Inoue, Hironobu Miyamoto, Tatsuo Nakayama, Yuji Ando
  • Publication number: 20100276732
    Abstract: A semiconductor device includes a lower barrier layer 12 composed of a layer of AlxGa1-xN (0?x?1) in a state of strain relaxation, and a channel layer 13, which is composed of a layer of InyGa1-yN (0?y?1) disposed on the lower barrier layer 12, has band gap that is smaller than band gap of the lower barrier layer 12, and exhibits compressive strain. A gate electrode 1G is formed over the channel layer 13 via an insulating film 15 and a source electrode 1S and a drain electrode 1D serving as ohmic electrodes are formed over the channel layer 13. The insulating film 15 is constituted of polycrystalline or amorphous member.
    Type: Application
    Filed: December 25, 2008
    Publication date: November 4, 2010
    Inventors: Yuji Ando, Yasuhiro Okamoto, Kazuki Ota, Takashi Inoue, Tatsuo Nakayama, Hironobu Miyamoto
  • Publication number: 20100270559
    Abstract: A field effect transistor includes: a channel layer 103 containing GaN or InGaN; a first electron-supplying layer 104 disposed over the channel layer 103 and containing InxAlyGa1-x-yN (0?x<1, 0<y<1, 0<x+y<1); a first etch stop layer 105 disposed over the first electron-supplying layer 104 and containing indium aluminum nitride (InAlN); and a second electron-supplying layer 106 provided over the first etch stop layer 105 and containing InaAlbGa1-a-bN (0?a<1, 0<b<1, 0<a+b<1). A first recess 111, which extends through the second electron-supplying layer 106 and the first etch stop layer 105 and having a bottom surface constituted of a section of the first electron-supplying layer 104, is provided in the second electron-supplying layer 106 and the first etch stop layer 105. A gate electrode 109 covers the bottom surface of the first recess 111 and is disposed in the first recess 111.
    Type: Application
    Filed: November 17, 2008
    Publication date: October 28, 2010
    Applicant: NEC CORPORATION
    Inventor: Kazuki Ota
  • Patent number: 7800131
    Abstract: A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: September 21, 2010
    Assignee: NEC Corporation
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20100224910
    Abstract: Disclosed is an HJFET 110 which comprises: a channel layer 12 composed of InyGa1-yN (0?y?1); a carrier supply layer 13 composed of AlxGa1-xN (0?x?1), the carrier supply layer 13 being provided over the channel layer 12 and including at least one p-type layer; and a source electrode 15S, a drain electrode 15D and a gate electrode 17 which are disposed facing the channel layer 12 through the p-type layer, and provided over the carrier supply layer 13. The following relational expression is satisfied: 5.6×1011x<NA×?×t [cm?2]<5.6×1013x, where x denotes an Al compositional ratio of the carrier supply layer, t denotes a thickness of the p-type layer, NA denotes an impurity concentration, and ? denotes an activation ratio.
    Type: Application
    Filed: March 29, 2007
    Publication date: September 9, 2010
    Applicant: NEC Corporation
    Inventors: Yuji Ando, Hironobu Miyamoto, Tatsuo Nakayama, Yasuhiro Okamoto, Takashi Inoue, Yasuhiro Murase, Kazuki Ota, Akio Wakejima, Naotaka Kuroda
  • Publication number: 20100155779
    Abstract: In a field effect transistor, a Group III nitride semiconductor layer structure containing a hetero junction, a source electrode 101 and a drain electrode 103 formed apart from each other over the Group III nitride semiconductor layer structure, and a gate electrode 102 disposed between these electrodes, are provided. Over the surface of the Group III nitride semiconductor layer structure, a SiO2 film 122 containing oxygen as a constitutive element is provided, in contact with both side faces of the gate electrode 102. Over the surface of the Group III nitride semiconductor layer structure, a SiN film 121 is provided so as to cover the region between the SiO2 film 122 and the source electrode 101, and the region between the SiO2 film 122 and the drain electrode 103. The SiN film 121 is composed of a material different from that composing the SiO2 film 122, and contains nitrogen as a constitutive element.
    Type: Application
    Filed: September 28, 2006
    Publication date: June 24, 2010
    Inventors: Yasuhiro Murase, Kazuki Ota, Yasuhiro Okamoto, Kouji Matsunaga, Hironobu Miyamoto
  • Publication number: 20090267114
    Abstract: A field effect transistor 100 includes a group III-V nitride semiconductor layer structure containing a hetero junction, a source electrode 105 and a drain electrode 106 formed on the group III-V nitride semiconductor layer structure to be spaced apart from each other; a gate electrode 110 arranged between the source electrode 105 and the drain electrode 106, and an insulating layer 107 provided over, and in contact with, the group III-V nitride semiconductor layer structure in a region between the gate electrode 110 and the drain electrode 106 or in a region between the source electrode 105 and the gate electrode 110. A portion of the gate electrode 110 is buried in the group III-V nitride semiconductor layer structure, and a side edge of the gate electrode in an interface of the group III-V nitride semiconductor layer and the insulating layer 107 is spaced apart from the gate electrode 110.
    Type: Application
    Filed: March 23, 2007
    Publication date: October 29, 2009
    Applicant: NEC Corporation
    Inventors: Tatsuo Nakayama, Yuji Ando, Hironobu Miyamoto, Yasuhiro Okamoto, Takashi Inoue, Kazuki Ota, Yasuhiro Murase, Naotaka Kuroda
  • Publication number: 20090230429
    Abstract: A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Application
    Filed: June 12, 2006
    Publication date: September 17, 2009
    Applicant: NEC CORPORATION
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tasuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20090230430
    Abstract: A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Application
    Filed: June 12, 2006
    Publication date: September 17, 2009
    Applicant: NEC CORPRORATION
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Aklo Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20090173968
    Abstract: A semiconductor device 100 contains an undoped GaN channel layer 105, an AlGaN electron donor layer 106 provided on the undoped GaN channel layer 105 as being brought into contact therewith, an undoped GaN layer 107 provided on the AlGaN electron donor layer 106, a source electrode 101 and a drain electrode 103 provided on the undoped GaN layer 107 as being spaced from each other, a recess 111 provided in the region between the source electrode 101 and the drain electrode 103, as being extended through the undoped GaN layer 107, a gate electrode 102 buried in the recess 111 as being brought into contact with the AlGaN electron donor layer 106 on the bottom surface thereof, and an SiN film 108 provided on the undoped GaN layer 107, in the region between the gate electrode 102 and the drain electrode 103.
    Type: Application
    Filed: December 12, 2006
    Publication date: July 9, 2009
    Applicant: NEC CORPORATION
    Inventors: Kouji Matsunaga, Kazuki Ota, Yasuhiro Okamoto, Tatsuo Nakayama, Akio Wakejima, Yuji Ando, Hironobu Miyamoto, Takashi Inoue, Yasuhiro Murase
  • Publication number: 20090045438
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Application
    Filed: October 25, 2006
    Publication date: February 19, 2009
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto
  • Patent number: 6534790
    Abstract: The present invention provides a field effect transistor (FET) having, on a semi-insulating compound semiconductor substrate, a buffer layer; an active layer that includes a channel layer made of a first conductive-type epitaxial growth layer (e.g. InGaAs); source/drain electrodes formed on a first conductive-type contact layer which is formed either on said active layer or on a lateral face thereof; a gate layer made of a second conductive-type epitaxial growth layer (e.g. p+-GaAs); and a gate electrode formed on said gate layer; which further has, between said second conductive-type gate layer and said channel layer, a semiconductor layer (e.g. InGaP) that rapidly lowers the energy of the valance band spreading from said gate layer to said channel layer. The present invention improves withstand voltage characteristic of a FET having a pn junction in a gate region (JFET) and realizes stable operations of a JFET.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: March 18, 2003
    Assignee: NEC Corporation
    Inventors: Takehiko Kato, Kazuki Ota, Hironobu Miyamoto, Naotaka Iwata, Masaaki Kuzuhara
  • Publication number: 20020171096
    Abstract: In a field effect transistor, there are provided a gate electrode on a Schottky layer over an InP channel layer over the substrate, and a field control electrode extending over an insulating layer and separated from the Schottky layer and being positioned between the gate electrode and the drain electrode for controlling an expansion of a space charge region in the channel layer.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 21, 2002
    Applicant: NEC CORPORATION
    Inventors: Akio Wakejima, Kazuki Ota, Kohji Matsunaga, Walter Contrata, Masaaki Kuzuhara
  • Publication number: 20020003245
    Abstract: P-type impurities in a gate electrode is positively made to diffuse into a p-type impurity diffusion layer and an electrical p-n junction face in a gate electrode region is formed either within or on the bottom face of the p-type impurity diffusion layer, and thereby the effect that an interface state arising on a regrowth interface has over the p-n junction face can be well suppressed. This results in an improvement in high frequency characteristic of the JFET.
    Type: Application
    Filed: February 7, 2001
    Publication date: January 10, 2002
    Applicant: NEC Corporation
    Inventors: Takehiko Kato, Kazuki Ota, Hironobu Miyamoto, Naotaka Iwata