Patents by Inventor Kazuomi Ryoshi

Kazuomi Ryoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170324090
    Abstract: Provided is a nickel-containing composite hydroxide that is a precursor of a positive-electrode active material with which a nonaqueous-electrolyte secondary battery having a low irreversible capacity and a high energy density can be configured. An aqueous alkaline aqueous solution and a complexing agent are added to an mixed aqueous solution including at least nickel and cobalt to regulate the pH (measured at a reference liquid temperature of 25° C.) of this mixed aqueous solution to 11.0 to 13.0, the ammonium concentration to 4 to 15 g/L, and the reaction temperature to 20° C. to 45° C. Using stirring blades having an inclination angle of 20° to 60° with respect to a horizontal plane, the mixture is stirred to conduct a crystallization reaction under such conditions that when the nickel-containing composite hydroxide to be obtained is roasted in air at 800° C. for 2 hours, the roasted composite hydroxide has a BET value of 12 to 50 m2/g.
    Type: Application
    Filed: October 29, 2015
    Publication date: November 9, 2017
    Inventors: Kazuomi RYOSHI, Kensaku MORI, Katsuya KASE, Yasutaka KAMATA
  • Publication number: 20170305757
    Abstract: A nickel composite hydroxide containing reduced amounts of sulfate radicals and chlorine as impurities. The nickel composite hydroxide is represented by Ni1-x-yCoxAly(OH)2+?(0.05?x?0.01?y?0.2, x+y<0.4, and 0??<0.5), and includes spherical secondary particles formed by aggregation of plurality of plate-shaped primary particles, secondary particles have an average particle diameter of 3-20 ?m, sulfate radical content of 1.0 mass % or less, chlorine content of 0.5 mass % or less, and carbonate radical content of 1.0-2.5 mass %. The nickel composite hydroxide is obtained by a process including a crystallization step in which crystallization is performed in reaction solution obtained by adding alkali solution to aqueous solution containing mixed aqueous solution containing nickel and cobalt, ammonium ion supplier, and aluminum source.
    Type: Application
    Filed: October 20, 2015
    Publication date: October 26, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroko OSHITA, Kazuomi RYOSHI, Masanori TAKAGI
  • Publication number: 20170309911
    Abstract: Disclose herein are processes for producing a nickel cobalt aluminum composite hydroxide and producing a positive electrode active material for non-aqueous electrolyte secondary batteries. Nucleation is performed by controlling an aqueous solution for nucleation containing a nickel-containing metal compound, cobalt-containing metal compound, ammonium ion supplier, and aluminum source so that the aqueous solution's pH for nucleation is 12.0 to 13.4, and then in a particle growth step, particle growth is performed in an aqueous solution for particle growth obtained by controlling the aqueous solution for nucleation obtained in the nucleation step so that the pH of aqueous solution for nucleation is 10.5 to 12.0. Further, in nucleation step, an aqueous solution containing aluminum and sodium is used as the aluminum source contained in aqueous solution for nucleation, and the mole ratio of sodium to aluminum in aqueous solution containing aluminum and sodium is adjusted to 1.5 to 3.0.
    Type: Application
    Filed: October 20, 2015
    Publication date: October 26, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi RYOSHI, Koji YAMAJI, Kensaku MORI
  • Publication number: 20170271653
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery achieves high output characteristics and battery capacity, and allows a high electrode density to be achieved in the case of using the material for a positive electrode of a battery; and a non-aqueous electrolyte secondary battery uses the positive electrode active material, thereby achieving a high output with a high capacity. Prepared is a nickel composite hydroxide including plate-shaped secondary particles aggregated with overlaps between plate surfaces of multiple plate-shaped primary particles, where shapes projected from directions perpendicular to the plate surfaces of the plate-shaped primary particles are any plane projection shape of spherical, elliptical, oblong, and massive shapes, and the secondary particles have an aspect ratio of 3 to 20, and a volume average particle size (Mv) of 4 ?m to 20 ?m measured by a laser diffraction scattering method.
    Type: Application
    Filed: April 24, 2015
    Publication date: September 21, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru YAMAUCHI, Kazuomi RYOSHI, Kensaku MORI
  • Patent number: 9755232
    Abstract: A nickel composite hydroxide represented by Ni1-x-y-zCoxMnyMz(OH)2+A (where 0?x?0.35, 0?y?0.35, 0?z?0.1, 0<x+y, 0<x+y+z?0.7, 0?A?0.5, with M being at least one of V, Mg, Al, Ti, Mo, Nb, Zr and W), a plate-shaped crystal core is generated by allowing a crystal core generating aqueous solution containing cobalt and/or manganese to have a pH value of 7.5 to 11.1 at a standard liquid temperature of 25° C., and slurry for the particle growth containing the plate-shaped crystal core is adjusted to a pH value of 10.5 to 12.5 at a standard liquid temperature of 25° C., while a mixed aqueous solution containing a metal compound containing at least nickel is being supplied thereto, so that the crystal core is grown as particles.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 5, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi Ryoshi, Kensaku Mori
  • Patent number: 9685656
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 20, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
  • Publication number: 20170155144
    Abstract: A positive electrode active material for non-aqueous electrolyte secondary batteries that can achieve a high output characteristic and a high battery capacity when used in a positive electrode of a battery and that can achieve a high electrode density, and a non-aqueous electrolyte secondary battery that uses such a positive electrode active material and can achieve a high capacity and a high output. A lithium-manganese-cobalt composite oxide includes plate-shaped secondary particles each obtained by aggregation of a plurality of plate-shaped primary particles caused by overlapping of plate surfaces of the plate-shaped primary particles, wherein a shape of the primary particles is any one of a spherical, elliptical, oval, or a planar projected shape of a block-shaped object, and the secondary particles have an aspect ratio of 3 to 20 and a volume-average particle size (Mv) of 4 ?m to 20 ?m as measured by a laser diffraction scattering process.
    Type: Application
    Filed: April 24, 2015
    Publication date: June 1, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru YAMAUCHI, Kazuomi RYOSHI
  • Publication number: 20170133677
    Abstract: Provided is a precursor of a positive electrode active material for non-aqueous electrolyte secondary batteries which allows a non-aqueous electrolyte secondary battery to have excellent battery characteristics. A manganese composite hydroxide is obtained by adjusting the pH value of an aqueous solution for nucleation containing cobalt and/or manganese to 7.5 to 11.1 on the basis of a liquid temperature of 25° C. to form plate-shaped crystal nuclei, and adjusting the pH value of a slurry for particle growth containing the plate-shaped crystal nuclei to 10.5 to 12.5 on the basis of a liquid temperature of 25° C., and supplying a mixed aqueous solution including a metal compound containing at least manganese to the slurry, thereby performing particle growth of the plate-shaped crystal nuclei.
    Type: Application
    Filed: April 2, 2015
    Publication date: May 11, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi RYOSHI, Kensaku MORI
  • Publication number: 20170104208
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: MITSURU YAMAUCHI, KAZUOMI RYOSHI, KENSAKU MORI
  • Patent number: 9583764
    Abstract: When producing a nickel composite hydroxide that is a precursor to the cathode active material for a non-aqueous electrolyte secondary battery by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.6, after which, while keeping the amount of slurry constant and continuously removing only the liquid component, the crystallization reaction is continued until the average particle size per volume of secondary particles of the nickel composite hydroxide becomes 8.0 ?m to 50.0 ?m.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: February 28, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
  • Patent number: 9553312
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 24, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
  • Publication number: 20160308207
    Abstract: Obtaining cobalt hydroxide particles having a high filling property and a high density. The cobalt hydroxide particles used as a precursor for a positive electrode active material of a non-aqueous electrolyte secondary battery, including spherical secondary particles of flocculated primary particles, wherein average aspect ratio of the secondary particles is 0.7 or more, average particle diameter is 5 to 35 ?m, and a value of (d90-d10)/MV indicating a dispersion of a particle size distribution is 0.6 or less, wherein, in sectional observation of the secondary particles, a ratio (N/L) of number (N) of gaps with maximum long diameter 0.3 ?m or more recognized in particles of the secondary particles with sectional long diameter 3 ?m or more to sectional long diameter (L) of the secondary particles is 1.0 or less, and also, maximum long diameter of the gaps is 15% or less of sectional long diameter of the secondary particles.
    Type: Application
    Filed: January 22, 2015
    Publication date: October 20, 2016
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru YAMAUCHI, Kazuomi RYOSHI, Shuzo OZAWA, Ryozo USHIO
  • Publication number: 20160268605
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.
    Type: Application
    Filed: April 22, 2016
    Publication date: September 15, 2016
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: MITSURU YAMAUCHI, Kazuomi Ryoshi, Kensaku Mori
  • Patent number: 9318739
    Abstract: To obtain a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability, nickel manganese composite hydroxide particles are a precursor for a cathode active material having lithium nickel manganese composite oxide with a hollow structure and a small and uniform particle size. An aqueous solution for nucleation includes a metallic compounds that contains nickel and a metallic compound that contains manganese, but does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt. After nucleation is performed, an aqueous solution for particle growth is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 19, 2016
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroyuki Toya, Kazuomi Ryoshi, Toshiyuki Osako
  • Publication number: 20160087262
    Abstract: Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material including lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.
    Type: Application
    Filed: December 8, 2015
    Publication date: March 24, 2016
    Inventors: Hiroyuki TOYA, Kazuomi RYOSHI, Toshiyuki OSAKO
  • Publication number: 20150243984
    Abstract: To improve cycling characteristics of a non-aqueous electrolyte secondary battery by obtaining a nickel-cobalt composite hydroxide having a sharp particle size distribution as a precursor, a slurry including a nickel-cobalt composite hydroxide obtained by continuously supplying an aqueous solution that includes at least nickel and cobalt, an ammonium ion donor aqueous solution and a caustic alkali aqueous solution to a reaction vessel and reacting, is continuously extracted and separated into a large particle size portion and s small particle size portion by classification, and the small particle size portion is continuously returned to the reaction vessel. As a result, a nickel-cobalt composite hydroxide is obtained that is expressed by the general formula: Ni1-x-yCoxMy(OH)2 (where, 0.05?x?0.50, 0?y?0.10, 0.05?x+y?0.50, and M is at least one kind of metal element selected from among Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga, and that satisfies the relationships (D50?D10)/D50?0.30, and (D90?D50)/D50?0.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 27, 2015
    Inventors: Katsuya Kase, Yasutaka Kamata, Kazuomi Ryoshi
  • Publication number: 20150228977
    Abstract: Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.
    Type: Application
    Filed: April 21, 2015
    Publication date: August 13, 2015
    Inventors: Hiroyuki TOYA, Kazuomi RYOSHI, Toshiyuki OSAKO
  • Publication number: 20150155548
    Abstract: A nickel composite hydroxide having a volume-average particle size of the secondary particles of 8.0 ?m to 50.0 ?m is obtained, by obtaining a nickel composite hydroxide slurry in a primary crystallization process by providing an aqueous solution having at least a nickel salt and a neutralizer into a reaction vessel while continuously stirring in a state of not containing a complex ion formation agent, and controlling the crystallization reaction so that the ratio of the volume-average particles size of secondary particles with respect to that of the secondary particles finally obtained is 0.2 to 0.6, and producing the nickel composite hydroxide in a secondary crystallization process by continuing the crystallization process while keeping the amount of the obtained slurry constant, continuously removing only the liquid component of the slurry, and performing control so that the slurry has a temperature of 70° C. to 90° C. and a pH value at a standard liquid temperature of 25° C. of 10.0 to 11.0.
    Type: Application
    Filed: June 6, 2013
    Publication date: June 4, 2015
    Inventors: Kazuomi Ryoshi, Kensaku Mori
  • Publication number: 20150037676
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 5, 2015
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
  • Publication number: 20140186710
    Abstract: A nickel composite hydroxide represented by Ni1-x-y-zCoxMnyMz(OH)2+A (where 0?x?0.35, 0?y?0.35, 0?z?0.1, 0<x+y, 0<x+y+z?0.7, 0?A?0.5, with M being at least one of V, Mg, Al, Ti, Mo, Nb, Zr and W), a plate-shaped crystal core is generated by allowing a crystal core generating aqueous solution containing cobalt and/or manganese to have a pH value of 7.5 to 11.1 at a standard liquid temperature of 25° C., and slurry for the particle growth containing the plate-shaped crystal core is adjusted to a pH value of 10.5 to 12.5 at a standard liquid temperature of 25° C., while a mixed aqueous solution containing a metal compound containing at least nickel is being supplied thereto, so that the crystal core is grown as particles.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 3, 2014
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Kazuomi RYOSHI, Kensaku MORI