Patents by Inventor Kazutoshi Higashiyama

Kazutoshi Higashiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040214392
    Abstract: A semiconductor device containing a dielectric capacitor having an excellent step coverage for a device structure of high aspect ratio corresponding to high integration degree, as well as a manufacturing method therefor are provided. A dielectric capacitor of high integration degree is manufactured by forming a bottom electrode 46 and a top-electrode 48 comprising a homogeneous thin Ru film with 100% step coverage while putting a dielectric 47 therebetween on substrates 44, 45 having a three-dimensional structure with an aspect ratio of 3 or more by a MOCVD process using a cyclopentadienyl complex within a temperature range from 180° C. or higher to 250° C. or lower.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 28, 2004
    Inventors: Toshihide Nabatame, Takaaki Suzuki, Tetsuo Fujiwara, Kazutoshi Higashiyama
  • Publication number: 20040180247
    Abstract: For the stabilization of the reaction, especially, for maintaining reaction temperature, the feedback control by the feedback unit is performed for to the supply of air (, oxygen, or oxidizing agent), whereas other materials are supplied by the open-loop control according to the instruction of the flow selection unit which indicates a preset value depending on the required hydrogen production volume. In addition, the continuous flow setting unit capable of changing the flow continuously is employed for the supply system of the air, whereas the flow control of the other materials is performed by use of the discrete flow setting units each of which provides the discretized flow by use of the on-off combination of two or more on-off valves.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 16, 2004
    Inventors: Kazutoshi Higashiyama, Masahiro Komachiya, Kiyoshi Hiyama, Tomoichi Kamo, Noriyuki Imada, Tetsurou Okano, Hiroyuki Kaku
  • Patent number: 6777248
    Abstract: A ferroelectric element having a high Pr and a low Ec and having a good withstand voltage, which is in the form of a thin film using a ferroelectric layer containing insulating particles, is provided. The ferroelectric layer containing the insulating particles is effective to suppress leakage current caused through grain boundaries of crystals, and hence to exhibit a high Pr and a low Ec and a good withstand voltage. The ferroelectric element has a structure in which such a ferroelectric layer in the form of a thin film is sandwiched between electrodes. By incorporating the ferroelectric element in a field effect transistor structure, it is possible to realize a highly integrated semiconductor device for detecting reading or writing.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: August 17, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Toshihide Nabatame, Takaaki Suzuki, Kazutoshi Higashiyama, Tomoji Oishi
  • Publication number: 20040075126
    Abstract: A ferroelectric capacitor of the type having a top electrode, a ferroelectric thin film, and a bottom electrode, is characterized in that said ferroelectric thin film is a perovskite-type oxide containing Pb and said upper and bottom electrodes contain an intermetallic compound composed of Pt and Pb. An electronic device is provided with said ferroelectric capacitor. This construction is designed to solve the following problems. In a non-volatile ferroelectric memory (FeRAM), a degraded layer occurs near the interface between the PZT and the electrode due to hydrogen evolved during processing or due to diffusion of Pb from the PZT into the electrode. A stress due to a difference in lattice constant occurs in the interface between the electrode and the ferroelectric thin film. The degraded layer and the interfacial stress deteriorate the initial polarizing characteristics of the ferroelectric capacitor and also greatly deteriorate the polarizing characteristics after switching cycles.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 22, 2004
    Inventors: Tetsuo Fujiwara, Toshihide Nabatame, Takaaki Suzuki, Kazutoshi Higashiyama
  • Publication number: 20040033407
    Abstract: A solid polymer electrolyte is made up of a polymer compound having a hydrocarbon aromatic group in the backbone thereof and including a side chain expressed by FORMULA 1: 1
    Type: Application
    Filed: August 15, 2003
    Publication date: February 19, 2004
    Inventors: Toru Koyama, Toshiyuki Kobayashi, Kenji Yamaga, Tomoichi Kamo, Kazutoshi Higashiyama
  • Patent number: 6670065
    Abstract: A solid polymer electrolyte is made up of a polymer compound having a hydrocarbon aromatic group in the backbone thereof and including a side chain expressed by FORMULA 1: &Parenopenst;CH2&Parenclosest;hSO3H  FORMULA 1 wherein “n” is 1, 2, 3, 4, 5, or 6. The solid polymer electrolyte may be incorporated into a membrane and may be used in a solution for covering an electrode catalyst.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: December 30, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toru Koyama, Toshiyuki Kobayashi, Kenji Yamaga, Tomoichi Kamo, Kazutoshi Higashiyama
  • Publication number: 20030096149
    Abstract: An object of the present invention is to provide a highly durable solid polymer electrolyte that has a deterioration resistance equal to or higher than that of the fluorine-containing solid polymer electrolytes or a deterioration resistance sufficient for practical purposes, and can be produced at a low cost. According to the present invention, there is provided a solid polymer electrolyte comprising a polyether ether sulfone that is used as a electrolyte and has sulfoalkyl groups bonded to its aromatic rings and represented by the general formula —(CH2)n—SO3H.
    Type: Application
    Filed: July 31, 2002
    Publication date: May 22, 2003
    Inventors: Tohru Koyama, Toshiyuki Kobayashi, Kenji Yamaga, Tomoichi Kamo, Kazutoshi Higashiyama
  • Patent number: 6548342
    Abstract: The temperature at which an oxide dielectric thin film is formed can be made lower than conventional by reducing the concentration of oxygen in an atmosphere for forming the thin film. As a result, there can be formed an oxide dielectric thin film which has a crystal structure preferentially oriented at a crystal plane allowing a polarization axis to be directed in the vertical direction, which eliminates any reaction with an electrode material, and controls the growth of crystal grains. The use of such an oxide dielectric thin film can provide an oxide dielectric element having a high spontaneous polarization and a small coercive field. Consequently, it is possible to achieve a dielectric element having a high density of integration for detecting reading and writing operations, and a semiconductor device using the same.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: April 15, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takaaki Suzuki, Toshihide Nabatame, Kazutoshi Higashiyama
  • Publication number: 20030030967
    Abstract: A ferroelectric material readily forms a liquid phase with an alkali metal such as Li, Na, or K (an capacitor of Group Ia) added thereto. The liquid phase reaction takes place at a bottom temperature than the solid-solid reaction. The ferroelectric material crystallizes through the liquid phase reaction. Thus it is possible to crystallize the ferroelectric material without reaction between it and its adjacent electrodes by annealing temperature at 350-500° C. which is bottom than before. Also, a ferroelectric material can be crystallized at a bottom temperature if it is added to Mg or Ca as an alkaline earth capacitor. As in the case of said ferroelectric, a high-dielectric can be crystallized at a bottom temperature (150-450° C.) if it is added to Li, Na, K, Mg, or Ca. The above-mentioned ferroelectric or high-dielectric is formed into a thin film between an top and bottom electrodes so as to produce a ferroelectric capacitor or high-dielectric capacitor.
    Type: Application
    Filed: June 6, 2002
    Publication date: February 13, 2003
    Inventors: Toshihide Nabatame, Takaaki Suzuki, Tetsuo Fujiwara, Kazutoshi Higashiyama
  • Publication number: 20030008187
    Abstract: For the stabilization of the reaction, especially, for maintaining reaction temperature, the feedback control by the feedback unit is performed for to the supply of air (, oxygen, or oxidizing agent), whereas other materials are supplied by the open-loop control according to the instruction of the flow selection unit which indicates a preset value depending on the required hydrogen production volume. In addition, the continuous flow setting unit capable of changing the flow continuously is employed for the supply system of the air, whereas the flow control of the other materials is performed by use of the discrete flow setting units each of which provides the discretized flow by use of the on-off combination of two or more on-off valves.
    Type: Application
    Filed: February 11, 2002
    Publication date: January 9, 2003
    Inventors: Kazutoshi Higashiyama, Masahiro Komachiya, Kiyoshi Hiyama, Tomoichi Kamo, Noriyuki Imada, Tetsurou Okano, Hiroyuki Kaku
  • Publication number: 20030001189
    Abstract: A ferroelectric capacitor of the type having a top electrode, a ferroelectric thin film, and a bottom electrode, is characterized in that said ferroelectric thin film is a perovskite-type oxide containing Pb and said upper and bottom electrodes contain an intermetallic compound composed of Pt and Pb. An electronic device is provided with said ferroelectric capacitor. This construction is designed to solve the following problems. In a non-volatile ferroelectric memory (FeRAM), a degraded layer occurs near the interface between the PZT and the electrode due to hydrogen evolved during processing or due to diffusion of Pb from the PZT into the electrode. A stress due to a difference in lattice constant occurs in the interface between the electrode and the ferroelectric thin film. The degraded layer and the interfacial stress deteriorate the initial polarizing characteristics of the ferroelectric capacitor and also greatly deteriorate the polarizing characteristics after switching cycles.
    Type: Application
    Filed: August 28, 2002
    Publication date: January 2, 2003
    Inventors: Tetsuo Fujiwara, Toshihide Nabatame, Takaaki Suzuki, Kazutoshi Higashiyama
  • Publication number: 20020061431
    Abstract: It is an object of the present invention to provide
    Type: Application
    Filed: March 20, 2001
    Publication date: May 23, 2002
    Inventors: Toru Koyama, Toshiyuki Kobayashi, Kenji Yamaga, Tomoichi Kamo, Kazutoshi Higashiyama
  • Patent number: 6316391
    Abstract: The present invention provides superconductors capable of being used at temperatures to which the superconductor can be cooled in liquid nitrogen and of carrying current in a high critical current density in a magnetic field, and superconducting apparatuses employing the superconductors and more advantageous in costs than the conventional superconducting apparatuses. A superconducting wire is formed by combining a metallic body of a cubic aggregate structure and an oxide superconducting substance. The present invention provides superconductors, superconducting wires, superconducting magnets and applied superconducting apparatuses having a high superconducting critical current density. The applied super conducting apparatuses employing the superconductors or the superconducting wires in accordance with the present invention are able to operate when cooled in liquid nitrogen-and can be manufactured at costs lower than those of the conventional superconducting apparatuses.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Toshiya Doi, Takesi Ozawa, Toyotaka Yuasa, Kazutoshi Higashiyama
  • Patent number: 5545610
    Abstract: An oxide-based superconductor ccmprising Tl, Pb, Sr, Ca and Cu or Tl, Pb, Ba, Sr, Ca and Cu, prepared by subjecting a low melting point composition comprising the superconductor-constituting elements and a solid composition comprising the superconductor-constituting elements, prepared in advance, to reaction under melting conditions for the low melting point composition, has distinguished current pass characteristics in a high magnetic field due to improvement of electric contact among grains through reduction of non-superconductor phase, increase in crystal grain sizes (reduction of crystal boundaries), orientation of crystal and cleaning of crystal boundaries.
    Type: Grant
    Filed: September 2, 1993
    Date of Patent: August 13, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Kazutoshi Higashiyama, Toshiya Doi, Takesi Ozawa, Seizi Takeuchi, Tomoichi Kamo, Shinpei Matsuda, Yutaka Yoshida
  • Patent number: 5508256
    Abstract: A method of producing a high-temperature oxide superconducting material, which comprises the steps of (a) preparing a material corresponding to an oxide superconductor of the perovskite type structure consisting essentially of a first member selected from the group consisting yttrium, lanthanoids, thallium and bismuth; at least one alkaline earth metal; copper; and oxygen and (b) heating the material in the presence of an alkali metal selected from the group consisting of potassium, sodium, rubidium and cesium to a temperature around the melting point of the alkali metal or to a higher temperature for a time sufficient to effect grain growth in the superconductor material, thereby to produce the superconductor containing the alkali metal in an amount not larger than 4 mole % based on the first member.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: April 16, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Teruo Kumagai, Tsuneyuki Kanai, Atsuko Soeta, Takaaki Suzuki, Kazutoshi Higashiyama, Tomoichi Kamo, Shinpei Matsuda, Kunihiro Maeda, Akira Okayama, Hideyo Kodama, Akira Yoshinari, Yoshimi Yanai
  • Patent number: 5276012
    Abstract: A method is disclosed of forming an oxide superconducting film comprising the steps of (1) mixing (a) the vapors of organic metal materials in such proportions as to provide a predetermined metal composition, or (b) said organic metal materials in such proportions as to provide a predetermined metal composition vaporizing and mixture, and (2) bringing the mixture into contact with a heated substrate so that an oxide superconducting film is formed on said substrate by a chemical vapor deposition process, wherein laser light is applied onto said substrate during formation of said oxide superconducting film on said substrate, whereby the crystallographic orientation of said oxide superconducting film being formed in the irradiated area of said substrate is such that the c-axis is parallel to the substrate.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: January 4, 1994
    Assignees: NGK Spark Plug Co., Ltd., International Superconductivity Technology Center, Hitachi Ltd.
    Inventors: Takahisa Ushida, Kazutoshi Higashiyama, Izumi Hirabayashi, Shoji Tanaka
  • Patent number: 5252315
    Abstract: A lithium aluminate powder having a large specific surface area can be produced by contacting a raw material powder of lithium aluminate with water singly or in the presence of an organic solvent having one or more hydroxyl groups to form a hydrate, followed by dehydration with heating.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: October 12, 1993
    Assignees: Hitachi, Ltd., The Tokyo Electric Power Co., Inc.
    Inventors: Kazutoshi Higashiyama, Susumu Yoshioka, Tadayoshi Murakami
  • Patent number: 5190913
    Abstract: An apparatus for producing a superconducting oxide film with stable properties by metal organic chemical vapor deposition, suitable for mass production, is provided with a gas analyzer comprising a differential pressure meter 38 between a raw material gas collector tube 35 provided in a transfer line 8 for leading a raw material gas to a film forming chamber 10 and a bypass line 37, a dilution gas line 49 interlocked with the differential pressure meter 38 and for leading a dilution gas to the raw material gas collector tube 35, a gas separation column 42 branched from the bypass line, a gas detector 31 connected to the gas separation column 42, flow rate controllers 50 for carrier gases 43 and 45 and a thermostat 13 for heating all the lines.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: March 2, 1993
    Assignees: Hitachi, Ltd., NGK Spark Plug Co., Ltd., International Superconductivity Technology Center
    Inventors: Kazutoshi Higashiyama, Takahisa Ushida, Izumi Hirabayashi, Shoji Tanaka
  • Patent number: 4741279
    Abstract: A method of combusting a coal-water mixture fuel. The mixture is atomized into a conically-shaped primary pre-combustion chamber. Primary air is supplied, at a rate smaller than that required for complete burning of the mixture and in the form of a swirl about the axis of the jet of the atomized mixture, from the peripheral portion of the primary pre-combustion chamber into a secondary pre-combustion chamber connected to said primary pre-combustion chamber, thus forming a region of low pressure around the jet of the mixture. The region of low pressure serves to induce the atmosphere gas from the secondary pre-combustion chamber of higher temperature back into the primary pre-combustion chamber of a lower temperature, so that the water content of the mixture is evaporated and the mixture is ignited by the heat of the hot atmosphere gas.
    Type: Grant
    Filed: January 7, 1987
    Date of Patent: May 3, 1988
    Assignees: Hitachi, Ltd., Babcock-Hitachi Kabushiki Kaisha
    Inventors: Shigeru Azuhata, Kazutoshi Higashiyama, Kiyoshi Narato, Hironobu Kobayashi, Norio Arashi, Tooru Inada, Kenichi Sohma, Keizou Ohtsuka, Yoshitaka Takahashi, Fumio Koda, Tadahisa Masai, Masakiyo Tanikawa, Kei Kawano