Patents by Inventor Kazutoshi Nagata

Kazutoshi Nagata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9646873
    Abstract: A method for producing SOS substrates which can be incorporated into a semiconductor production line, and is capable of producing SOS substrates which have few defects and no variation in defects, and in a highly reproducible manner, or in other words, a method for producing SOS substrates by: forming an ion-injection region (3) by injecting ions from the surface of a silicon substrate (1); adhering the ion-injection surface of the silicon substrate (1) and the surface of a sapphire substrate (4) to one another directly or with an insulating film (2) interposed therebetween; and then obtaining an SOS substrate (8) having a silicon layer (6) on the sapphire substrate (4), by detaching the silicon substrate in the ion-injection region (3). This method is characterized in that the orientation of the sapphire substrate (4) is a C-plane having an off-angle of 1 degree or less.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 9, 2017
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shigeru Konishi, Yoshihiro Kubota, Makoto Kawai, Shoji Akiyama, Kazutoshi Nagata
  • Patent number: 9312166
    Abstract: This invention provides a method for manufacturing composite wafers in which at least two composite wafers can be obtained from one donor wafer, and in which the chamfering step can be omitted. Provided is a method for manufacturing composite wafers comprising: bonding surfaces of at least two handle wafers and a surface of a donor wafer which has a diameter greater than or equal to a sum of diameters of the at least two handle wafers and which has a hydrogen ion implantation layer formed inside thereof by implanting hydrogen ions from the surface of the donor wafer, to obtain a bonded wafer; heating the bonded wafer at 200° C. to 400° C.; and detaching a film from the donor wafer along the hydrogen ion implantation layer of the heated bonded wafer, to obtain the composite wafers having the film transferred onto the at least two handle wafers.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 12, 2016
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Kazutoshi Nagata
  • Publication number: 20160071761
    Abstract: A hybrid substrate has an SOI structure having a good silicon active layer, without defects such as partial separation of the silicon active layer is obtained without trimming the outer periphery of the substrate. An SOI substrate is obtained by sequentially laminating a first silicon oxide film and a silicon active layer in this order on a silicon substrate. A terrace portion that does not have the silicon active layer is formed in the outer peripheral portion of the silicon substrate surface. A second silicon oxide film is formed on the silicon active layer surface of the SOI substrate The bonding surfaces of the SOI substrate and a supporting substrate that has a thermal expansion coefficient different from that of the SOI substrate is subjected to an activation treatment. The SOI substrate and the supporting substrate are bonded with the second silicon oxide film being interposed therebetween.
    Type: Application
    Filed: April 21, 2014
    Publication date: March 10, 2016
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuji Tobisaka, Shoji Akiyama, Yoshihiro Kubota, Makoto Kawai, Kazutoshi Nagata
  • Publication number: 20150179506
    Abstract: A method for producing SOS substrates which can be incorporated into a semiconductor production line, and is capable of producing SOS substrates which have few defects and no variation in defects, and in a highly reproducible manner, or in other words, a method for producing SOS substrates by: forming an ion-injection region (3) by injecting ions from the surface of a silicon substrate (1); adhering the ion-injection surface of the silicon substrate (1) and the surface of a sapphire substrate (4) to one another directly or with an insulating film (2) interposed therebetween; and then obtaining an SOS substrate (8) having a silicon layer (6) on the sapphire substrate (4), by detaching the silicon substrate in the ion-injection region (3). This method is characterized in that the orientation of the sapphire substrate (4) is a C-plane having an off-angle of 1 degree or less.
    Type: Application
    Filed: July 18, 2013
    Publication date: June 25, 2015
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeru Konishi, Yoshihiro Kubota, Makoto Kawai, Shoji Akiyama, Kazutoshi Nagata
  • Patent number: 8937721
    Abstract: A detection device is disclosed which includes: a detection plate in which a silicon layer and a silicon oxide layer are arranged in this order on a silica glass substrate; and optical prism which is optically adhered to a surface of the silica glass substrate of the detection plate, where the surface is not provided with the silicon layer and the silicon oxide layer; a light-irradiation unit configured to irradiate light to the detection plate through the optical prism and arranged so that light is incident on the optical prism with a fixed incident angle; and a light-detection unit configured to detect intensity of reflected light reflected from the detection plate, wherein the detection device detects a change in dielectric constant by detecting a change in property of the reflected light.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 20, 2015
    Assignees: National Institute of Advanced Industrial Science and Technology, Shin-Etsu Chemical Co., Ltd.
    Inventors: Makoto Fujimaki, Shoji Akiyama, Kazutoshi Nagata
  • Publication number: 20140322546
    Abstract: A thermally oxidized heterogeneous composite substrate provided with a single crystal silicon film on a handle substrate, said heterogeneous composite substrate being obtained by, prior to a thermal oxidization treatment at a temperature exceeding 850° C., conducting an intermediate heat: treatment at 650-850° C. and then conducting the thermal oxidization treatment at a temperature exceeding 850° C. According to the present invention, a thermally oxidized heterogeneous composite substrate with a reduced number of defects after thermal oxidization can be obtained.
    Type: Application
    Filed: January 11, 2013
    Publication date: October 30, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Yuji Tobisaka, Kazutoshi Nagata
  • Publication number: 20140308800
    Abstract: This invention provides a method for manufacturing composite wafers in which at least two composite wafers can be obtained from one donor wafer, and in which the chamfering step can be omitted. Provided is a method for manufacturing composite wafers comprising: bonding surfaces of at least two handle wafers and a surface of a donor wafer which has a diameter greater than or equal to a sum of diameters of the at least two handle wafers and which has a hydrogen ion implantation layer formed inside thereof by implanting hydrogen ions from the surface of the donor wafer, to obtain a bonded wafer; heating the bonded wafer at 200° C. to 400° C.; and detaching a film from the donor wafer along the hydrogen ion implantation layer of the heated bonded wafer, to obtain the composite wafers having the film transferred onto the at least two handle wafers.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 16, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Kazutoshi Nagata
  • Publication number: 20140235032
    Abstract: The method for producing a transparent SOI wafer is provided and includes treating a bonded wafer at a first temperature of 150 to 300° C. as a first heat treatment; cutting off an unbonded portion of the bonded wafer by irradiating a visible light laser from a silicon wafer side of the heated bonded wafer to a boundary between the bonded surface and an unbonded circumferential surface, while keeping an angle of 60 to 90° between the incident light and a radial direction of the silicon wafer; subjecting the silicon wafer of the bonded wafer having the unbonded portion cut off to grinding, polishing, or etching to form a silicon film; and heat-treating the bonded wafer having the silicon film formed at a second temperature of 300 to 500° C. as a second heat treatment which is higher than the first temperature.
    Type: Application
    Filed: October 11, 2012
    Publication date: August 21, 2014
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Kazutoshi Nagata
  • Publication number: 20130293896
    Abstract: [Problem] To provide a small-sized, stable, and highly sensitive detection device by achieving an optical system which is the most suitable for an optical waveguide mode sensor using a spectral measurement method.
    Type: Application
    Filed: November 15, 2011
    Publication date: November 7, 2013
    Inventors: Makoto Fujimaki, Shoji Akiyama, Kazutoshi Nagata