Patents by Inventor Kazuya Ishihara

Kazuya Ishihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8817525
    Abstract: A semiconductor memory device includes a memory cell array having a plurality of memory cells arranged in a matrix, each memory cell being configured such that a variable resistance element and a selection transistor are connected in series. A set operation for a memory cell (an operation of converting the resistance of the variable resistance element to a low resistance) is performed by applying a set voltage pulse for a longer time than that for a reset operation (an operation of converting the resistance of the variable resistance element to a high resistance) while limiting, using the selection transistor, an electric current flowing in the set operation to a certain low electric current, and by simultaneously applying the set voltage pulse to the plurality of memory cells.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: August 26, 2014
    Assignees: Sharp Kabushiki Kaisha, Elpida Memory, Inc.
    Inventors: Kazuya Ishihara, Yukio Tamai, Takashi Nakano, Akiyoshi Seko
  • Patent number: 8737115
    Abstract: A method of a forming process for a variable resistive element, which is performed in short time comparable to the pulse forming and a writing current in a switching action is the same level as that of the DC forming, is provided. In the forming process, a variable resistive element is changed by voltage pulse application from an initial high resistance state just after produced to a variable resistance state where the switching action is performed. The forming process includes a first step of applying a first pulse having a voltage amplitude lower than a threshold voltage at which the resistance of the variable resistive element is lowered, to between both electrodes of the variable resistive element, and a second step of applying a second pulse having a voltage amplitude having the same polarity as the first pulse and not lower than the threshold voltage, thereto after the first step.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: May 27, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinobu Yamazaki, Kazuya Ishihara, Suguru Kawabata
  • Publication number: 20140140125
    Abstract: A semiconductor device is provided with the variable resistance element, and a control circuit that controls a resistance state of the variable resistance element by controlling current between a first end and a second end of the variable resistance element. The control circuit causes the variable resistance element to change from a first resistance state to a second resistance state by having a first current flow from the first end to the second end of the variable resistance element. In addition, after a second current smaller than the first current is made to flow from the first end to the second end of the variable resistance element, the control circuit causes the variable resistance element to change from the second resistance state to the first resistance state by having a third current flow from the second end to the first end thereof.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 22, 2014
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Kenji MAE, Mitsuru NAKURA, Kazuya ISHIHARA, Shinobu YAMAZAKI
  • Publication number: 20140036573
    Abstract: A semiconductor memory device includes a memory cell array having a plurality of memory cells arranged in a matrix, each memory cell being configured such that a variable resistance element and a selection transistor are connected in series. A set operation for a memory cell (an operation of converting the resistance of the variable resistance element to a low resistance) is performed by applying a set voltage pulse for a longer time than that for a reset operation (an operation of converting the resistance of the variable resistance element to a high resistance) while limiting, using the selection transistor, an electric current flowing in the set operation to a certain low electric current, and by simultaneously applying the set voltage pulse to the plurality of memory cells.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Applicants: ELPIDA MEMORY, INC., SHARP KABUSHIKI KAISHA
    Inventors: Kazuya ISHIHARA, Yukio TAMAI, Takashi NAKANO, Akiyoshi SEKO
  • Patent number: 8645795
    Abstract: The present invention provides a nonvolatile semiconductor memory device that can optimize a timing of performing an error detection and correction process to shorten a processing time. Upon receiving a write request to a memory cell array including a variable resistive element where information is stored based on a resistance state of a variable resistor, an input/output buffer outputs write data to a write control unit and an ECC control unit. The write control unit performs a data write process of writing divided data, obtained by dividing the write data into a predetermined number of data, to the databanks. The ECC control unit generates a first error correction code by performing an error correction code generation process to the write data or the divided data, in parallel with the data write process. The write control unit performs a code write process of writing first test data into an ECC bank.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: February 4, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuya Ishihara, Yoshiaki Tabuchi
  • Publication number: 20140027703
    Abstract: A variable resistive element comprising a configuration that an area of an electrically contributing region of a variable resistor body is finer than that constrained by an upper electrode or a lower electrode and its manufacturing method are provided. A bump electrode material is formed on a lower electrode arranged on a base substrate. The bump electrode material is contacted to a variable resistor body at a surface different from a contact surface to the lower electrode. The variable resistor body is contacted to an upper electrode at a surface different from a contact surface to the bump electrode material. Thus, a cross point region between the bump electrode material (the variable resistor body) and the upper electrode becomes an electrically contributing region of the variable resistor body, and then an area thereof can be reduced compared with that of the region regarding the conventional variable resistive element.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: Xenogenic Development Limited Liability Company
    Inventors: Yasunari Hosoi, Kazuya Ishihara, Takahiro Shibuya, Tetsuya Ohnishi, Takashi Nakano
  • Patent number: 8593855
    Abstract: In a semiconductor memory device using a variable resistive element made of a metal oxide for storing information, a voltage amplitude of a writing voltage pulse for changing the variable resistive element to a high resistance state is set within a voltage range in which the resistance value of the high resistance state after the change increases with time. The voltage amplitude is set within the voltage range in which the resistance value of the high resistance state after the change increases toward a predetermined peak with increase in voltage amplitude. When a data error is detected by the ECC circuit, it is estimated that the data that should be in the low resistance state changes to the high resistance state, and the variable resistive elements of all memory cells from which the error is detected are written to the low resistance state to correct the error bit.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: November 26, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junya Onishi, Nobuyoshi Awaya, Mitsuru Nakura, Kazuya Ishihara
  • Patent number: 8560923
    Abstract: The invention realizes a semiconductor memory device that can efficiently execute a detection of a data error that might possibly occur in a continuous reading action, and a correction of the error data. The semiconductor memory device uses a variable resistive element made of a metal oxide for storing information. During a reading action of coded data with an ECC in the semiconductor memory device, when a data error is detected by an ECC circuit, a writing voltage pulse having a polarity opposite to a polarity of a reading voltage pulse is applied to all memory cells from which the error is detected so as to correct bits from which the error is detected, on an assumption that an erroneous writing has occurred due to the application of the writing voltage pulse having the polarity same as the polarity of the applied reading voltage pulse.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 15, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mitsuru Nakura, Nobuyoshi Awaya, Kazuya Ishihara
  • Patent number: 8530877
    Abstract: A variable resistance element that can stably perform a switching operation with a property variation being reduced by suppressing a sharp current that accompanies completion of forming process, and a non-volatile semiconductor memory device including the variable resistance element are realized. The non-volatile semiconductor memory device uses the variable resistance element for storing information in which a resistance changing layer is interposed between a first electrode and a second electrode, and a buffer layer is inserted between the first electrode and the resistance changing layer where a switching interface is formed. The buffer layer and the resistance changing layer include n-type metal oxides, and materials of the buffer layer and the resistance changing layer are selected such that energy at a bottom of a conduction band of the n-type metal oxide configuring the buffer layer is lower than that of the n-type metal oxide configuring the resistance changing layer.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 10, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junya Onishi, Shinobu Yamazaki, Kazuya Ishihara, Yushi Inoue, Yukio Tamai, Nobuyoshi Awaya
  • Patent number: 8514607
    Abstract: Provided is a semiconductor memory device that is capable of stably programming with desirable controllability to a desired electric resistance state in a random access programming action and is provided with a variable resistance element. Regardless of a resistance state of a variable resistance element of a memory cell that is a target of a writing action (erasing and programming actions), an erasing voltage pulse for bringing the resistance state of the variable resistance element to an erased state having a lowest resistance value is applied. Thereafter, a programming voltage pulse for bringing the resistance state of the variable resistance element to a desired programmed state is applied to the variable resistance element of the programming action target memory cell. By always applying the programming voltage pulse after having applied the erasing voltage pulse, a plurality of programming voltage pulses being sequentially applied can be avoided.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: August 20, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mitsuru Nakura, Kazuya Ishihara, Shinobu Yamazaki, Suguru Kawabata
  • Patent number: 8508978
    Abstract: A semiconductor memory device includes a memory cell array in which a plurality of memory cells is aligned in a matrix shape, each memory cell including a two-terminal memory element and a transistor for selection connected in series; a first voltage applying circuit that applies a writing voltage pulse to first bit lines; and a second voltage applying circuit that applies a pre-charge voltage to the first bit lines and second bit lines, wherein in a writing of a memory cell, after the second voltage applying circuit has pre-charged both ends of the memory cell to a same voltage, the first voltage applying circuit applies the writing voltage pulse via the first bit line that is directly connected to the transistor for selection, and the second voltage applying circuit applies the pre-charge voltage to the second bit line directly connected to the memory element.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 13, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuya Ishihara, Mitsuru Nakura, Yoshiji Ohta
  • Patent number: 8497492
    Abstract: A variable resistive element comprising a configuration that an area of an electrically contributing region of a variable resistor body is finer than that constrained by an upper electrode or a lower electrode and its manufacturing method are provided. A bump electrode material is formed on a lower electrode arranged on a base substrate. The bump electrode material is contacted to a variable resistor body at a surface different from a contact surface to the lower electrode. The variable resistor body is contacted to an upper electrode at a surface different from a contact surface to the bump electrode material. Thus, a cross point region between the bump electrode material (the variable resistor body) and the upper electrode becomes an electrically contributing region of the variable resistor body, and then an area thereof can be reduced compared with that of the region regarding the conventional variable resistive element.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 30, 2013
    Assignee: Xenogenic Development Limited Liability Company
    Inventors: Yasunari Hosoi, Kazuya Ishihara, Takahiro Shibuya, Tetsuya Ohnishi, Takashi Nakano
  • Patent number: 8482956
    Abstract: A semiconductor memory device includes a memory cell array where a plurality of memory cells are arranged in a matrix, each of the memory cells serially connecting a two-terminal type memory element and a transistor for selection, a first voltage applying circuit that applies a write voltage pulse to a bit line, and a second voltage applying circuit that applies a precharge voltage to a bit line and a common line. In writing the memory cell, after the second voltage applying circuit has both terminals of the memory cell previously precharged to the same voltage, the first voltage applying circuit applies the write voltage pulse to one terminal of the writing target memory cell via the bit line, and while the write voltage pulse is applied, the second voltage applying circuit maintains the application of the precharge voltage to the other terminal of the memory cell via the common line.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinobu Yamazaki, Yoshiji Ohta, Kazuya Ishihara, Mitsuru Nakura, Suguru Kawabata, Nobuyoshi Awaya
  • Patent number: 8451647
    Abstract: A resistance control method for a nonvolatile variable resistive element in a nonvolatile semiconductor memory device is provided. The device includes a memory cell array in which unit memory cells having nonvolatile variable resistive elements and transistors are arranged in a matrix. The memory cells that are targets of a memory operation are selected by first selection lines (word lines), second selection lines (bit lines) and third selection lines (source lines). The method includes steps of selecting one or more first selection lines, selecting a plurality of second selection lines, and applying a compensated voltage in which a change in potential of the third selection lines caused by current flowing into the third selection lines through the second selection lines is compensated in a voltage that is necessary for the memory operation, such that the voltage necessary for the memory operation is applied to all of the selected memory cells.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 28, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kazuya Ishihara
  • Publication number: 20130127328
    Abstract: A light-emitting device includes a substrate that includes at least a pair of electrodes, an LED element electrically mounted on the substrate, a phosphor plate adhered to an upper surface of the LED element and including an upper surface and a lower surface each having an area larger than that of the upper surface of the LED element, a white resin provided on an upper surface of the substrate and seamlessly covering a peripheral side surface of the LED element and a peripheral side surface of the phosphor plate. A lower surface of the phosphor plate is adhered to the upper surface of the LED element through a transparent adhesive.
    Type: Application
    Filed: June 18, 2012
    Publication date: May 23, 2013
    Applicants: CITIZEN ELECTRONICS CO., LTD., CITIZEN HOLDINGS CO., LTD.
    Inventors: Kazuya ISHIHARA, Yuki SUTO, Yusuke WATANABE
  • Patent number: 8422270
    Abstract: A nonvolatile semiconductor memory device includes a bit voltage adjusting circuit which, for each bit line, fixes potentials of a selected bit line and a non-selected bit line to a predetermined potential to perform a memory operation and a data voltage adjusting circuit which, for each data line, fixes potentials of a selected data line and a non-selected data line to a predetermined potential to perform a memory operation. Each of the voltage adjusting circuits includes an operational amplifier and a transistor, a voltage required for a memory operation is input to the non-inverted input terminal of the operational amplifier, and the inverted input terminal of the operational amplifier is connected to the bit line or the data line, so that the potential of the bit line or the data line is fixed to a potential of the non-inverted input terminal of the operational amplifier.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 16, 2013
    Assignees: Sharp Kabushiki Kaisha, National University Corporation Kanazawa University
    Inventors: Suguru Kawabata, Shinobu Yamazaki, Yoshiji Ohta, Kazuya Ishihara, Nobuyoshi Awaya, Akio Kitagawa, Kazuya Nakayama
  • Patent number: 8411487
    Abstract: Regardless of a resistance state of a variable resistance element of a memory cell that is a target of a writing action (erasing and programming actions), an erasing voltage pulse for bringing the resistance state of the variable resistance element to an erased state having a lowest resistance value is applied. Thereafter, a programming voltage pulse for bringing the resistance state of the variable resistance element to a desired programmed state is applied to the variable resistance element of the programming action target memory cell. By always applying the programming voltage pulse after having applied the erasing voltage pulse, a plurality of programming voltage pulses being sequentially applied can be avoided. Further, the memory cell array is constituted of even-numbers of subbanks, and the application of the erasing voltage pulse in one subbank and the application of the programming voltage pulse in the other subbank are alternately performed.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 2, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mitsuru Nakura, Kazuya Ishihara, Shinobu Yamazaki, Suguru Kawabata
  • Patent number: 8411488
    Abstract: A nonvolatile semiconductor memory device includes a memory cell array for storing user data provided by arranging memory cells each having a variable resistive element having a first electrode, a second electrode, and a variable resistor made of a metal oxide sandwiched between the first and second electrodes. The first and second electrodes are formed of a conductive material forming ohmic junction with the variable resistor and a conductive material forming non-ohmic junction with the variable resistor, respectively. The variable resistor changes between two or more different resistance states by applying a voltage between the electrodes. The resistance state after being changed is maintained in a nonvolatile manner. The variable resistive elements of all memory cells in the memory cell array are set to the highest of the two or more different resistance states in an unused state before the memory cell array is used to store the user data.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 2, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Suguru Kawabata, Shinobu Yamazaki, Kazuya Ishihara, Junya Onishi, Nobuyoshi Awaya, Yukio Tamai
  • Patent number: 8400830
    Abstract: A nonvolatile semiconductor memory device in which a memory cell life can be prolonged while making it possible to perform writing in units of bits. When command information represents writing, a comparing unit 37 compares written data in a target memory cell with write target data to give a comparison result to a write/read control unit 40, when the comparison result represents matching, the write/read control unit 40 does not instruct a decoder unit (51A, 51B, and 53) to perform writing in the target memory cell, and when the comparison result represents mismatching, the write/read control unit 40 instructs the decoder unit to write the write target data in the target memory cell.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: March 19, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yutaka Ishikawa, Kazuya Ishihara, Yoshiji Ohta
  • Publication number: 20130001605
    Abstract: A light-emitting device includes a circuit substrate including at least a pair of electrodes, an LED element electrically mounted on the circuit substrate, a phosphor plate disposed on an upper surface of the LED element, a diffuser plate disposed on an upper surface of the phosphor plate, and a white resin disposed on an upper surface of the circuit substrate and covering a peripheral side surface of the LED element, a peripheral side surface of the phosphor plate, and a peripheral side surface of the diffuser plate. The present invention makes it possible to obtain a planar light-emitting surface even with a plurality of LEDs, and also, a problem of color-ring occurrence caused by a phosphor may be less represented.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 3, 2013
    Applicants: CITIZEN HOLDINGS CO., LTD., CITIZEN ELECTRONICS CO., LTD.
    Inventors: Kazuya ISHIHARA, Jo Kinoshita