Patents by Inventor Kazuyuki Toyoda

Kazuyuki Toyoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120258018
    Abstract: There is provided a substrate procession apparatus, comprising: a processing chamber configured to house a plurality of substrates with a laminated film formed thereon which is composed of any one of copper-indium, copper-gallium, or copper-indium-gallium; a reaction tube formed so as to constitute the processing chamber; a gas supply tube configured to introduce elemental selenium-containing gas or elemental sulfur-containing gas to the processing chamber; an exhaust tube configured to exhaust an atmosphere in the processing chamber; heating section provided so as to surround the reaction tube; and a fan configured to forcibly circulate the atmosphere in the processing chamber in a short-side direction of the plurality of glass substrates, on surfaces of the plurality of glass substrates.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 11, 2012
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Eisuke NISHITANI, Yasuo KUNII, Kazuyuki TOYODA, Hidenari YOSHIDA, Mitsunori ISHISAKA
  • Patent number: 8261692
    Abstract: A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: September 11, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Tadashi Kontani, Kazuyuki Toyoda, Taketoshi Sato, Toru Kagaya, Nobuhito Shima, Nobuo Ishimaru, Masanori Sakai, Kazuyuki Okuda, Yasushi Yagi, Seiji Watanabe, Yasuo Kunii
  • Patent number: 8227346
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 24, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8193101
    Abstract: Provided is a substrate processing apparatus. The substrate processing apparatus includes a process chamber, a gas supply system, a gas discharge system, an RF (radio frequency) unit, an electrode, and a control device. The control device controls the gas supply system, the gas discharge system, and the RF unit. While the control device controls the RF unit to apply predetermined RF power to the electrode for generating plasma, the control device controls the gas supply system to supply a process gas to the process chamber alternately at a first flowrate and at a second flowrate greater than the first flowrate.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 5, 2012
    Assignee: Hitachi Kokusai Electric, Inc.
    Inventors: Taketoshi Sato, Kazuyuki Toyoda
  • Publication number: 20120077350
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 29, 2012
    Inventors: Hironobu MIYA, Kazuyuki TOYODA, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Publication number: 20120034790
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Application
    Filed: March 31, 2009
    Publication date: February 9, 2012
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8105957
    Abstract: Disclosed is a producing method of a semiconductor device comprising a first step of supplying a first reactant to a substrate to cause a ligand-exchange reaction between a ligand of the first reactant and a ligand as a reactive site existing on a surface of the substrate, a second step of removing a surplus of the first reactant, a third step of supplying a second reactant to the substrate to cause a ligand-exchange reaction to change the ligand after the exchange in the first step into a reactive site, a fourth step of removing a surplus of the second reactant, and a fifth step of supplying a plasma-excited third reactant to the substrate to cause a ligand-exchange reaction to exchange a ligand which has not been exchange-reacted into the reactive site in the third step into the reactive site, wherein the first to fifth steps are repeated predetermined times.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 31, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Taketoshi Sato, Masayuki Asai, Norikazu Mizuno, Masanori Sakai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8047158
    Abstract: A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 1, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Tadashi Kontani, Kazuyuki Toyoda, Taketoshi Sato, Toru Kagaya, Nobuhito Shima, Nobuo Ishimaru, Masanori Sakai, Kazuyuki Okuda, Yasushi Yagi, Seiji Watanabe, Yasuo Kunii
  • Patent number: 8039404
    Abstract: A production method for a semiconductor device comprising the first step of supplying a first reaction material to a substrate housed in a processing chamber to subject to a ligand substitution reaction a ligand as a reaction site existing on the surface of the substrate and the ligand of the first reaction material, the second step of removing the excessive first reaction material from the processing chamber, the third step of supplying a second reaction material to the substrate to subject a ligand substituted by the first step to a ligand substitution reaction with respect to a reaction site, the fourth step of removing the excessive second reaction material from the processing chamber, and a fifth step of supplying a third reaction material excited by plasma to the substrate to subject a ligand, not subjected to a substitution reaction with respect to a reaction site in the third step, to a ligand substitution reaction with respect to a reaction site, wherein the steps 1-5 are repeated a specified number
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 18, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita
  • Patent number: 8028652
    Abstract: A plasma processing apparatus comprises a processing chamber in which a plurality of substrates are stacked and accommodated; a pair of electrodes extending in the stacking direction of the plurality of substrates, which are disposed at one side of the plurality of substrates in said processing chamber, and to which high frequency electricity is applied; and a gas supply member which supplies processing gas into a space between the pair of electrodes.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: October 4, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuyuki Toyoda, Yasuhiro Inokuchi, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Patent number: 8020514
    Abstract: A plasma processing apparatus comprises a processing chamber in which a plurality of substrates are stacked and accommodated; a pair of electrodes extending in the stacking direction of the plurality of substrates, which are disposed at one side of the plurality of substrates in said processing chamber, and to which high frequency electricity is applied; and a gas supply member which supplies processing gas into a space between the pair of electrodes.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: September 20, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuyuki Toyoda, Yasuhiro Inokuchi, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Publication number: 20110212625
    Abstract: A substrate processing apparatus which is capable of improving a manufacture yield while processing a substrate with high precision, and a method of manufacturing a semiconductor device. The substrate processing apparatus includes a substrate support part provided within a process chamber and configured to support a substrate; a substrate support moving mechanism configured to move the substrate support part; a gas feeding part configured to feed a gas into the process chamber; an exhaust part configured to exhaust the gas within the process chamber; and a plasma generating part disposed to face the substrate support part.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 1, 2011
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Kazuyuki TOYODA, Osamu KASAHARA, Yoshiro HIROSE, Hiroyuki TAKADERA, Daigi KAMIMURA
  • Publication number: 20110209664
    Abstract: A substrate processing apparatus comprising: a processing chamber which is to accommodate at least one substrate; a gas supply system which is to supply processing gas into the processing chamber; an exhaust system which is to exhaust atmosphere in the processing chamber; and at least one pair of electrodes which are to bring the processing gas into an active state and which are accommodated in protection tubes such that the electrodes can be inserted into and pulled out from the protection tubes, wherein the electrodes are accommodated in the protection tube in a state where at least a portion of the electrodes is bent, and the electrodes are formed of flexible members, is disclosed.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Inventors: Shizue Ogawa, Kazuyuki Toyoda, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Patent number: 7958842
    Abstract: A substrate processing apparatus comprising: a processing chamber which is to accommodate at least one substrate; a gas supply system which is to supply processing gas into the processing chamber; an exhaust system which is to exhaust atmosphere in the processing chamber; and at least one pair of electrodes which are to bring the processing gas into an active state and which are accommodated in protection tubes such that the electrodes can be inserted into and pulled out from the protection tubes, wherein the electrodes are accommodated in the protection tube in a state where at least a portion of the electrodes is bent, and the electrodes are formed of flexible members, is disclosed.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 14, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Shizue Ogawa, Kazuyuki Toyoda, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Patent number: 7900580
    Abstract: A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 8, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Tadashi Kontani, Kazuyuki Toyoda, Taketoshi Sato, Toru Kagaya, Nobuhito Shima, Nobuo Ishimaru, Masanori Sakai, Kazuyuki Okuda, Yasushi Yagi, Seiji Watanabe, Yasuo Kunii
  • Patent number: 7861668
    Abstract: A plasma processing apparatus comprises a processing chamber in which a plurality of substrates are stacked and accommodated; a pair of electrodes extending in the stacking direction of the plurality of substrates, which are disposed at one side of the plurality of substrates in said processing chamber, and to which high frequency electricity is applied; and a gas supply member which supplies processing gas into a space between the pair of electrodes.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 4, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuyuki Toyoda, Yasuhiro Inokuchi, Motonari Takebayashi, Tadashi Kontani, Nobuo Ishimaru
  • Publication number: 20100323507
    Abstract: A substrate processor enables realization of a proper process by combining advantages of a remote plasma and a plasma generated in an entire processing chamber. The substrate processor includes a conductive member (10) which is installed surrounding a processing space (1) and grounded to the earth and a pair of electrodes (4) installed inside the conductive member (10). A primary coil of an insulating transformer (7) is connected to a high-frequency power supply unit (14) and a secondary coil is connected to the electrodes (4). A switch (13) is connected to the connection line connecting the secondary coil to the electrodes (4). By setting up/cutting off the connection of the line to the earth with use of the switch (13), the region where the plasma is generated in the processing space (1) can be changed.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 23, 2010
    Inventors: Kazuyuki TOYODA, Nobuhito Shima, Nobuo Ishimaru, Yoshikazu Konno, Motonari Takebayashi, Takaaki Noda, Norikazu Mizuno
  • Publication number: 20100263593
    Abstract: A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 21, 2010
    Inventors: Tadashi Kontani, Kazuyuki Toyoda, Taketoshi Sato, Toru Kagaya, Nobuhito Shima, Nobuo Ishimaru, Masanori Sakai, Kazuyuki Okuda, Yasushi Yagi, Seiji Watanabe, Yasuo Kunii
  • Publication number: 20100258530
    Abstract: A substrate processor enables realization of a proper process by combining advantages of a remote plasma and a plasma generated in an entire processing chamber. The substrate processor includes a conductive member (10) which is installed surrounding a processing space (1) and grounded to the earth and a pair of electrodes (4) installed inside the conductive member (10). A primary coil of an insulating transformer (7) is connected to a high-frequency power supply unit (14) and a secondary coil is connected to the electrodes (4). A switch (13) is connected to the connection line connecting the secondary coil to the electrodes (4). By setting up/cutting off the connection of the line to the earth with use of the switch (13), the region where the plasma is generated in the processing space (1) can be changed.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Inventors: Kazuyuki TOYODA, Nobuhito Shima, Nobuo Ishimaru, Yoshikazu Konno, Motonari Takebayashi, Takaaki Noda, Norikazu Mizuno
  • Publication number: 20100233887
    Abstract: A production method for a semiconductor device comprising the first step of supplying a first reaction material to a substrate housed in a processing chamber to subject to a ligand substitution reaction a ligand as a reaction site existing on the surface of the substrate and the ligand of the first reaction material, the second step of removing the excessive first reaction material from the processing chamber, the third step of supplying a second reaction material to the substrate to subject a ligand substituted by the first step to a ligand substitution reaction with respect to a reaction site, the fourth step of removing the excessive second reaction material from the processing chamber, and a fifth step of supplying a third reaction material excited by plasma to the substrate to subject a ligand, not subjected to a substitution reaction with respect to a reaction site in the third step, to a ligand substitution reaction with respect to a reaction site, wherein the steps 1-5 are repeated a specified number
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Hironobu Miya, Kazuyuki Toyoda, Norikazu Mizuno, Taketoshi Sato, Masanori Sakai, Masayuki Asai, Kazuyuki Okuda, Hideki Horita