Patents by Inventor Keiji Hashimoto

Keiji Hashimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150236368
    Abstract: A gas passage forming body for a fuel battery includes gas passages and water guide passages. A communication passage is arranged between one of the water guide passages and a gas passage that is adjacent to the water guide passage and is in communication with the adjacent gas passage and water guide passage to permit water to move therethrough. An aid portion is arranged at water drainage ends of two adjacent ones of the water guide passages and aids bonding of water drained from the water drainage ends of the two adjacent ones of the water guide passages. Thus, water drainage from the water guide passages of the gas passage forming body is improved, and water in the gas passages is reduced. As a result, the battery performance of the fuel battery is improved due to an improvement in gas diffusion.
    Type: Application
    Filed: January 23, 2014
    Publication date: August 20, 2015
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji Hashimoto, Kousuke Kawajiri, Satoshi Futami
  • Publication number: 20150221958
    Abstract: Gas flow channels are provided between protrusions arranged in parallel on a first surface of a partition wall of a gas flow channel forming body, and water introduction channels are provided in valleys on the opposite side of each protrusion, on a second surface. In order to allow the gas flow channels and the water introduction channels to communicate so that water can pass there through, communication channels is provided to the partition wall. Intermediate structures are correspondingly provided inside the water introduction channels to the communication channels. A set of communication channels is formed by a pair of communication channels positioned at a first interval. A set of communication channels and another set of communication channels adjacent thereto are positioned on each protrusion with a second interval therebetween.
    Type: Application
    Filed: January 23, 2014
    Publication date: August 6, 2015
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji Hashimoto, Kousuke Kawajiri, Satoshi Futami
  • Publication number: 20150190951
    Abstract: In the present invention, when synchronization is lost due to backlash, and deviation between the rotational phases of a first processing roll and a second processing roll occurs, deviation between the rotational phases of dummy rotating bodies also occurs, and dummy blade parts of the dummy rotating bodies interfere with each other before blade parts of cutting blades of the first processing roll and the second processing roll (40) interfere with each other. Thus, interference between the blade parts is prevented.
    Type: Application
    Filed: June 26, 2013
    Publication date: July 9, 2015
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Tomoyuki Takamura, Keiji Hashimoto, Tomio Kinoshita, Manabu Kinoshita
  • Publication number: 20150190854
    Abstract: A first roll (20) and a second roll (40) of a roll forming device are provided with a plurality of stacked cutting blades (22, 122) and retainers (21, 121). The retainers (21, 121) pass through the stacked cutting blades (22, 122) and receive a first rotating shaft (16) and a second rotating shaft (18). Projections (21a, 121a) are formed on end portions of the retainers (21, 121). When the cutting blades (22, 122) are stacked, the projections (21a, 121a) control positioning operation of the cutting blades (22, 122). With this constitution, when the cutting blades (22, 122) are joined in a stacked state to the retainers (21, 121), the cutting blades (22, 122) in the stacking direction is controlled with the retainers (21, 121).
    Type: Application
    Filed: March 7, 2014
    Publication date: July 9, 2015
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji HASHIMOTO, Tomoyuki TAKAMURA
  • Patent number: 9065090
    Abstract: A membrane electrode assembly (15) formed by a solid electrolyte membrane (16) and electrode catalyst layers (17, 18) is interposed between a pair of frames (13, 14). Gas diffusion layers (19, 20) are laminated onto the surface of the electrode catalyst layers (17, 18). A first gas passage forming member (21) is laminated onto the surface of the gas diffusion layer (19) while a second gas passage forming member (22) is laminated onto the surface of the gas diffusion layer (20). Separators (23, 24) contact surfaces of the frame (13, 14) and the first and second gas passage forming member (21, 22). A plurality of first and second straight grooves (21c, 21d) are formed on the first gas passage forming member (21), such that the widths (w1, w2) differ from each other, and cross-sectional areas of the paths for the first and second gas passages (T1, T2) differ from each other.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: June 23, 2015
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventors: Kousuke Kawajiri, Keiji Hashimoto, Satoshi Futami, Tomokazu Hayashi
  • Patent number: 8835064
    Abstract: An electrode structure 15 is accommodated in a joint portion of frames 13 and 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are laid on a first surface of the electrode structure 15, and a second gas diffusion layer 20 and a second gas passage forming member 22 are laid on a second surface of the electrode structure 15. A separator 23 is joined to surfaces of the frame 13 and the gas passage forming member 21, and a separator 24 is joined to surfaces of the frame 14 and the gas passage forming member 22. A porous layer 26 having continuous pores is located between the gas passage forming member 22 and the separator 24. A drainage promoting member 30 formed of a porous material having continuous pores is provided to communicate with a downstream end of a second gas passage T2 of the second gas passage forming member 22 and to communicate with a downstream end of the continuous pores of the porous layer 26.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 16, 2014
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventors: Keiji Hashimoto, Kousuke Kawajiri, Satoshi Futami
  • Publication number: 20140162175
    Abstract: A cathode-side gas flow path of a cell that forms part of a fuel cell is formed by a first expanded metal arranged on a gas inlet side, and a second expanded metal arranged on a downstream side. The first expanded metal is such that mesh is arranged in a straight line, and gas that flows on a gas diffusion layer side is separated from gas that flows on a separator side. The gas flowrate on the gas inlet side is reduced, so the amount of produced water that is carried away is reduced. As a result, the gas inlet side is inhibited from becoming dry at high temperatures.
    Type: Application
    Filed: April 18, 2012
    Publication date: June 12, 2014
    Applicants: TOYOTA SHATAI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi Maeda, Kazumi Sugita, Atsushi Ida, Shingo Morikawa, Keiji Hashimoto, Satoshi Futami
  • Publication number: 20140017582
    Abstract: A fuel battery includes an oxidant gas flow passage having a downstream section, in which a gas diffusion porous body is arranged. The fuel battery includes a fuel gas flow passage having a downstream section, in which a gas diffusion porous body is arranged. A cooling medium flow passage is formed between a first separator of each unit cell of the fuel battery and a second separator of a unit cell adjacent to the unit cell. The flowing direction of a cooling medium in the cooling medium flow passage is the same as that of oxidant gas in the oxidant gas flow passage. An upstream section of the cooling medium flow passage is located closer to a surface of a membrane-electrode assembly that faces the oxidant gas flow passage adjacent to the cooling medium flow passage as compared with a downstream section of the cooling medium flow passage.
    Type: Application
    Filed: April 11, 2012
    Publication date: January 16, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji Hashimoto, Kousuke Kawajiri, Satoshi Futami
  • Patent number: 8445160
    Abstract: An electrolyte membrane on the inside of annular frames with an anode-side electrode catalyst layer, a first gas diffusion layer and a first gas flow channel-forming body stacked on top of the membrane. An electrode catalyst layer, a second gas diffusion layer and a second gas flow channel-forming body are stacked on the underside. Frames have a supply channel supplying fuel gas to the gas flow channel in the first gas flow channel-forming body, a discharge channel discharges the fuel gas. An overhang part that extends outward is on the outer peripheral edge of the first channel-forming body to overlap a flange part of the frame beyond the outer peripheral edge of the anode-side electrode catalyst layer. Penetration of seeping water can be prevented by retaining the seeping water in the overhang part.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: May 21, 2013
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventors: Yukihiro Suzuki, Keiji Hashimoto
  • Publication number: 20120301810
    Abstract: A membrane electrode assembly (15) formed by a solid electrolyte membrane (16) and electrode catalyst layers (17, 18) is interposed between a pair of frames (13, 14). Gas diffusion layers (19, 20) are laminated onto the surface of the electrode catalyst layers (17, 18). A first gas passage forming member (21) is laminated onto the surface of the gas diffusion layer (19) while a second gas passage forming member (22) is laminated onto the surface of the gas diffusion layer (20). Separators (23, 24) contact surfaces of the frame (13, 14) and the first and seccond gas passage forming member (21, 22). A plurality of first and second straight grooves (21c, 21d) are formed on the first gas passage forming member (21), such that the widths (w1, w2) differ from each other, and cross-sectional areas of the paths for the first and second gas passages (T1, T2) differ from each other.
    Type: Application
    Filed: December 16, 2010
    Publication date: November 29, 2012
    Applicant: Toyota Shatai Kabushiki Kaisha
    Inventors: Kousuke Kawajiri, Keiji Hashimoto, Satoshi Futami, Tomokazu Hayashi
  • Patent number: 8206865
    Abstract: A separator includes a separator body 11 and a collector 12. The separator body 11 prevents a mixed flow of fuel gas and oxidizer gas. The collector 12 is formed from a metal lath RM in which through holes each having an opening shape assuming the form of a hexagon are formed in a meshy, step-like arrangement. This establishes a substantially linear contact mode between the collector 12 and each of the separator body 11 and a carbon cloth CC superposed on an MEA 30. This contact mode increases a contact area between the carbon cloth CC and gas and allows a necessary and sufficient contact area between the carbon cloth CC and the separator body 11. Thus, gas can be supplied efficiently, and generated electricity can be collected efficiently to thereby improve electricity generation efficiency of a fuel cell.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 26, 2012
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventor: Keiji Hashimoto
  • Publication number: 20120028139
    Abstract: An electrode structure 15 is received in a joint portion of frames 13, 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are arranged on a first surface of the electrode structure 15. A second gas diffusion layer 20 and a second gas passage forming member 22 are formed on a second surface of the electrode structure 15. A separator 23 is joined with a surface of the frame 13 and a surface of the gas passage forming member 21. A separator 24 is joined with a surface of the frame 14 and a surface of the gas passage forming member 22. A water passage 28 is formed between a flat plate 25 of the gas passage forming member 22 and the separator 24. The water passage 28 has a depth set to a value smaller than depth of a gas passage T2 of the gas passage forming member 22. Generated water is introduced from the gas passage T2 of the gas passage forming member 22 to the water passage 28 through capillary action via communication holes 29.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 2, 2012
    Inventors: Kousuke Kawajiri, Keiji Hashimoto, Satoshi Futami, Takamasa Kanie, Kazunari Moteki, Tomokazu Hayashi
  • Publication number: 20120009489
    Abstract: An electrode structure 15 is accommodated in a joint portion of frames 13 and 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are laid on a first surface of the electrode structure 15, and a second gas diffusion layer 20 and a second gas passage forming member 22 are laid on a second surface of the electrode structure 15. A separator 23 is joined to surfaces of the frame 13 and the gas passage forming member 21, and a separator 24 is joined to surfaces of the frame 14 and the gas passage forming member 22. A porous layer 26 having continuous pores is located between the gas passage forming member 22 and the separator 24. A drainage promoting member 30 formed of a porous material having continuous pores is provided to communicate with a downstream end of a second gas passage T2 of the second gas passage forming member 22 and to communicate with a downstream end of the continuous pores of the porous layer 26.
    Type: Application
    Filed: March 31, 2009
    Publication date: January 12, 2012
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji Hashimoto, Kousuke Kawajiri, Satoshi Futami
  • Patent number: 8034510
    Abstract: A fuel cell includes a gas channel-forming member that forms a channel for supplying a reactant gas to a plane of an electrode. A basic structure of the gas channel-forming member is a corrugated plate portion in which ridge portions and trough portions continuously alternate with each other. In the gas channel-forming member, a plurality of corrugated plate portions are interconnected. Specifically, two adjacent corrugated plate portions are interconnected so that the trough portions of one of the two connect to the ridge portions of the other corrugated plate portion. The gas channel-forming member is disposed so that the direction of alignment of the connection planes S formed by the interconnection between the trough portions and the ridge portions is parallel to the plane of the electrode. This structure improves the diffusion efficiency of the reactant gas in the gas channel.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: October 11, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyota Shatai Kabushiki Kaisha
    Inventors: Kazunari Moteki, Keiji Hashimoto
  • Publication number: 20110076596
    Abstract: An MEA 15 is arranged between frames 13, 14. A first gas flow passage forming member 21 is arranged between an anode electrode layer 17 of the MEA 15 and a first separator 23 fixed to an upper surface of the frame 13. A second gas flow passage forming member 22 is arranged between a cathode electrode layer 18 of the MEA 15 and a second separator 24 fixed to a lower surface of the frame 14. The gas flow passage forming members 21, 22 are each formed by a metal lath 25. The metal lath is formed by forming a plurality of through holes 26 in a thin metal plate in a mesh-like manner and forming the thin metal plate in a stepped shape. The gas flow passage forming members 21, 22 each include a plurality of annular portions 27 forming the through holes 26. Each of the annular portions 27 has a flat surface portion 28a in a first contact portion 28, which contacts a carbon paper 19, 20.
    Type: Application
    Filed: June 16, 2009
    Publication date: March 31, 2011
    Inventors: Satoshi Futami, Keiji Hashimoto, Tomokazu Hayashi
  • Publication number: 20100291472
    Abstract: An electrolyte membrane on the inside of annular frames with an anode-side electrode catalyst layer, a first gas diffusion layer and a first gas flow channel-forming body stacked on top of the membrane. An electrode catalyst layer, a second gas diffusion layer and a second gas flow channel-forming body are stacked on the underside. Frames have a supply channel supplying fuel gas to the gas flow channel in the first gas flow channel-forming body, a discharge channel discharges the fuel gas. An overhang part that extends outward is on the outer peripheral edge of the first channel-forming body to overlap a flange part of the frame beyond the outer peripheral edge of the anode-side electrode catalyst layer. Penetration of seeping water can be prevented by retaining the seeping water in the overhang part.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 18, 2010
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Yukihiro Suzuki, Keiji Hashimoto
  • Publication number: 20090263697
    Abstract: A fuel cell stack includes a plurality of cells each including an MEA 10 sandwiched by separators 20. A hydrogen gas supply pipe 31 and an air supply pipe 32 for externally supplying gas, and a hydrogen gas discharge pipe 35 and an air discharge pipe 36 for discharging unreacted gas are connected to the stack. Gas-supply-side valves 33 and 34 are installed in the pipes 31 and 32, respectively. Gas-discharge-side valves 37 and 38 are installed in the pipes 35 and 36, respectively. The valves 33 and 37 close an anode-electrode-layer-side space including an anode electrode layer. The valves 34 and 38 close a cathode-electrode-layer-side space including a cathode electrode layer. This structure prevents introduction of new air, thereby suppressing an increase in the concentration of nitrogen gas in the anode-electrode-layer-side space.
    Type: Application
    Filed: July 13, 2006
    Publication date: October 22, 2009
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Keiji Hashimoto, Eiichirou Morozumi, Michi Hashiba
  • Patent number: 7605085
    Abstract: First wirings and first dummy wirings are formed in a p-SiOC film formed on a substrate. A p-SiOC film is formed, and a cap film is formed on the p-SiOC film. A dual damascene wiring, including vias connected to the first wirings and the second wirings, is formed in the cap film and the p-SiOC film 22. Dummy vias are formed on the periphery of isolated vias.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: October 20, 2009
    Assignees: Renesas Technology Corp., Panasonic Corporation
    Inventors: Kazuo Tomita, Keiji Hashimoto, Yasutaka Nishioka, Susumu Matsumoto, Mitsuru Sekiguchi, Akihisa Iwasaki
  • Publication number: 20090155665
    Abstract: A separator includes a separator body 11 and a collector 12. The separator body 11 prevents a mixed flow of fuel gas and oxidizer gas. The collector 12 is formed from a metal lath RM in which through holes each having an opening shape assuming the form of a hexagon are formed in a meshy, step-like arrangement. This establishes a substantially linear contact mode between the collector 12 and each of the separator body 11 and a carbon cloth CC superposed on an MEA 30. This contact mode increases a contact area between the carbon cloth CC and gas and allows a necessary and sufficient contact area between the carbon cloth CC and the separator body 11. Thus, gas can be supplied efficiently, and generated electricity can be collected efficiently to thereby improve electricity generation efficiency of a fuel cell.
    Type: Application
    Filed: July 13, 2006
    Publication date: June 18, 2009
    Applicant: TOYOTA SHATAI KABUSHIKI KAISHA
    Inventor: Keiji Hashimoto
  • Publication number: 20090121313
    Abstract: One air gap structure is disposed so as to circle around the outer wall of a seal ring in a loop by arranging, within first insulating films located in a chip outer area corresponding to an outer area of the seal ring, air gaps into a line in parallel to the seal ring, which air gaps are hermetically-closed holes that are provided respectively in wiring layers other than portions corresponding to a global wiring layer and are extended in the thickness direction of first insulating films. When a crack occurs at a chip peripheral edge due to dicing or the like, the advancing direction thereof is changed by the air gaps to an upward direction, thereafter the crack advances toward the uppermost position in the chip outer area along the extending direction of the one air gap structure, so that the crack cannot reach the seal ring.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 14, 2009
    Inventor: Keiji HASHIMOTO