Patents by Inventor Keiji Wada

Keiji Wada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8866262
    Abstract: A silicon carbide substrate includes: an n type drift layer having a first surface and a second surface opposite to each other; a p type body region provided in the first surface of the n type drift layer; and an n type emitter region provided on the p type body region and separated from the n type drift layer by the p type body region. A gate insulating film is provided on the p type body region so as to connect the n type drift layer and the n type emitter region to each other. A p type Si collector layer is directly provided on the silicon carbide substrate to face the second surface of the n type drift layer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Toru Hiyoshi
  • Patent number: 8846531
    Abstract: To provide a method of manufacturing a semiconductor device that can be in contact with both of an n-type SiC region and a p-type SiC region and can suppress increase in contact resistance due to oxidation, a method of manufacturing a semiconductor device includes the steps of preparing a SiC layer, and forming an ohmic electrode on a main surface of the SiC layer. The step of forming the ohmic electrode includes the steps of forming a conductor layer which will become the ohmic electrode on the main surface of the SiC layer, and performing heat treatment such that the conductor layer becomes the ohmic electrode. After the step of performing the heat treatment, a temperature of the ohmic electrode when a surface of the ohmic electrode is exposed to an atmosphere containing oxygen is set to 100° C. or lower.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 30, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideto Tamaso, Keiji Wada
  • Publication number: 20140252374
    Abstract: A first drift layer has a first surface facing a first electrode and electrically connected to a first electrode, and a second surface opposite to the first surface. The first drift layer has an impurity concentration NA. A relaxation region is provided in a portion of the second surface of the first drift layer. The first drift layer and the second drift layer form a drift region in which the relaxation region is buried. The second drift layer has an impurity concentration NB, NB>NA being satisfied. A body region, a source region, and a second electrode are provided on the second drift layer.
    Type: Application
    Filed: February 10, 2014
    Publication date: September 11, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
  • Patent number: 8829605
    Abstract: A MOSFET includes: a substrate made of silicon carbide and having a first trench and a second trench formed therein, the first trench having an opening at the main surface side, the second trench having an opening at the main surface side and being shallower than the first trench; a gate insulating film; a gate electrode; and a source electrode disposed on and in contact with a wall surface of the second trench. The substrate includes a source region, a body region, and a drift region. The first trench is formed to extend through the source region and the body region and reach the drift region. The second trench is formed to extend through the source region and reach the body region.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi, Shinji Matsukawa
  • Patent number: 8829535
    Abstract: A silicon carbide semiconductor device includes an insulation film, and a silicon carbide layer having a surface covered with the insulation film. The surface includes a first region. The first region has a first plane orientation at least partially. The first plane orientation is any of a (0-33-8) plane, (30-3-8) plane, (-330-8) plane, (03-3-8) plane, (-303-8) plane, and (3-30-8) plane.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mitsuru Shimazu, Toru Hiyoshi, Keiji Wada, Takeyoshi Masuda
  • Patent number: 8809945
    Abstract: A MOSFET includes: a substrate provided with a trench having a side wall surface having an off angle of not less than 50° and not more than 65° relative to a {0001} plane; an oxide film; and a gate electrode. The substrate includes a source region, a body region, and a drift region formed to sandwich the body region between the source region and the drift region. The source region and the body region are formed by means of ion implantation. The body region has an internal region sandwiched between the source region and the drift region and having a thickness of 1 ?m or smaller in a direction perpendicular to a main surface thereof. The body region has an impurity concentration of 3×1017 cm?3 or greater.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
  • Patent number: 8803252
    Abstract: A drift layer forms a first main surface of a silicon carbide layer and has a first conductivity type. A source region is provided to be spaced apart from the drift layer by a body region, forms a second main surface, and has the first conductivity type. A relaxing region is provided within the drift layer and has a distance Ld from the first main surface. The relaxing region has a second conductivity type and has an impurity dose amount Drx. The drift layer has an impurity concentration Nd between the first main surface and the relaxing region. Relation of Drx>Ld·Nd is satisfied. Thus, a silicon carbide semiconductor device having a high breakdown voltage is provided.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
  • Patent number: 8803294
    Abstract: A substrate has a surface made of a semiconductor having a hexagonal single-crystal structure of polytype 4H. The surface of the substrate is constructed by alternately providing a first plane having a plane orientation of (0-33-8), and a second plane connected to the first plane and having a plane orientation different from the plane orientation of the first plane. A gate insulating film is provided on the surface of the substrate. A gate electrode is provided on the gate insulating film.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Shin Harada, Keiji Wada, Toru Hiyoshi
  • Patent number: 8785301
    Abstract: A method of cleaning a SiC semiconductor includes the steps of forming an oxide film at the surface of a SiC semiconductor, and removing the oxide film. At the step of forming an oxide film, an oxide film is formed using ozone water having a concentration greater than or equal to 30 ppm. The forming step preferably includes the step of heating at least one of the surface of the SiC semiconductor and the ozone water. Thus, there can be obtained a method of cleaning a SiC semiconductor that can exhibit cleaning effect on the SiC semiconductor.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 22, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Tomihito Miyazaki, Toru Hiyoshi, Satomi Itoh, Hiromu Shiomi
  • Publication number: 20140197422
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate. The silicon carbide substrate is composed of an element region provided with a semiconductor element portion and a termination region surrounding the element region as viewed in a plan view. The semiconductor element portion includes a drift region having a first conductivity type. The termination region includes a first electric field relaxing region contacting the element region and having a second conductivity type different from the first conductivity type, and a second electric field relaxing region arranged outside the first electric field relaxing region as viewed in the plan view, having the second conductivity type, and spaced from the first electric field relaxing region. A ratio calculated by dividing a width of the first electric field relaxing region by a thickness of the drift region is not less than 0.5 and not more than 1.83.
    Type: Application
    Filed: December 12, 2013
    Publication date: July 17, 2014
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
  • Patent number: 8765562
    Abstract: A collector layer having p type is formed on a silicon carbide substrate having n type. A drift layer having n type is formed on a top surface side of the collector layer. A body region provided on the drift layer and having p type, and an emitter region provided on the body region to be separated from the drift layer by the body region and having n type are formed. A bottom surface side of the collector layer is exposed by removing the silicon carbide substrate.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Takeyoshi Masuda, Keiji Wada
  • Patent number: 8765523
    Abstract: A method for manufacturing a semiconductor device includes the steps of preparing a substrate made of silicon carbide and having an n type region formed to include a main surface, forming a p type region in a region including the main surface, forming an oxide film on the main surface across the n type region and the p type region, by heating the substrate having the p type region formed therein at a temperature of 1250° C. or more, removing the oxide film to expose at least a part of the main surface, and forming a Schottky electrode in contact with the main surface that has been exposed by removing the oxide film.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: July 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda
  • Publication number: 20140162439
    Abstract: A silicon carbide layer is epitaxially formed on a main surface of a substrate. The silicon carbide layer is provided with a trench having a side wall inclined relative to the main surface. The side wall has an off angle of not less than 50° and not more than 65° relative to a {0001} plane. A gate insulating film is provided on the side wall of the silicon carbide layer. The silicon carbide layer includes: a body region having a first conductivity type and facing a gate electrode with the gate insulating film being interposed therebetween; and a pair of regions separated from each other by the body region and having a second conductivity type. The body region has an impurity density of 5×1016 cm?3 or greater. This allows for an increased degree of freedom in setting a threshold voltage while suppressing decrease of channel mobility.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takeyoshi Masuda, Toru Hiyoshi, Keiji Wada
  • Publication number: 20140159057
    Abstract: There is provided a silicon carbide semiconductor device having excellent electrical characteristics such as channel mobility, and a method for manufacturing the same. A semiconductor device includes a substrate made of silicon carbide and having an off-angle of greater than or equal to 50° and less than or equal to 65° with respect to a surface orientation of {0001}, a p-type layer serving as a semiconductor layer, and an oxide film serving as an insulating film. The p-type layer is formed on the substrate and is made of silicon carbide. The oxide film is formed to contact with a surface of the p-type layer. A maximum value of the concentration of nitrogen atoms in a region within 10 nm of an interface between the semiconductor layer and the insulating film (interface between a channel region and the oxide film) is greater than or equal to 1×1021 cm?3.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Harada, Takeyoshi Masuda, Keiji Wada, Masato Tsumori
  • Publication number: 20140159056
    Abstract: There is provided a silicon carbide semiconductor device having excellent electrical characteristics such as channel mobility, and a method for manufacturing the same. A semiconductor device includes a substrate made of silicon carbide and having an off-angle of greater than or equal to 50° and less than or equal to 65° with respect to a surface orientation of {0001}, a p-type layer serving as a semiconductor layer, and an oxide film serving as an insulating film. The p-type layer is formed on the substrate and is made of silicon carbide. The oxide film is formed to contact with a surface of the p-type layer. A maximum value of the concentration of nitrogen atoms in a region within 10 nm of an interface between the semiconductor layer and the insulating film (interface between a channel region and the oxide film) is greater than or equal to 1×1021 cm?3.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Harada, Takeyoshi Masuda, Keiji Wada, Masato Tsumori
  • Patent number: 8728877
    Abstract: On a single-crystal substrate, a drift layer is formed. The drift layer has a first surface facing the single-crystal substrate, and a second surface opposite to the first surface, is made of silicon carbide, and has first conductivity type. On the second surface of the drift layer, a collector layer made of silicon carbide and having second conductivity type is formed. By removing the single-crystal substrate, the first surface of the drift layer is exposed. A body region and an emitter region are formed. The body region is disposed in the first surface of the drift layer, and has the second conductivity type different from the first conductivity type. The emitter region is disposed on the body region, is separated from the drift layer by the body region, and has first conductivity type.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda
  • Publication number: 20140121276
    Abstract: The present invention provides new methods of intervention for anxiety associated disorders, in particular, trauma-derived disorders such as PTSD, and therapeutic or prophylactic agents for anxiety associated disorders that can be used as foods, beverages, and dietary supplements, for example, and which contain as an active ingredient n-3 polyunsaturated fatty acids contained in krill oil or fish oil, for example. The present invention further provides methods for alleviating fear memory or methods for preventing its formation by adjusting the proportion of n-3 polyunsaturated fatty acids to n-6 polyunsaturated fatty acids as ingested.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 1, 2014
    Applicants: NATIONAL CENTER OF NEUROLOGY AND PSYCHIATRY, NIPPON SUISAN KAISHA, LTD.
    Inventors: Masayuki Sekiguchi, Daisuke Yamada, Jiro Takeo, Wakako Seki, Keiji Wada
  • Patent number: 8686434
    Abstract: There is provided a silicon carbide semiconductor device having excellent electrical characteristics such as channel mobility, and a method for manufacturing the same. A semiconductor device includes a substrate made of silicon carbide and having an off-angle of greater than or equal to 50° and less than or equal to 65° with respect to a surface orientation of {0001}, a p-type layer serving as a semiconductor layer, and an oxide film serving as an insulating film. The p-type layer is formed on the substrate and is made of silicon carbide. The oxide film is formed to contact with a surface of the p-type layer. A maximum value of the concentration of nitrogen atoms in a region within 10 nm of an interface between the semiconductor layer and the insulating film (interface between a channel region and the oxide film) is greater than or equal to 1×1021 cm?3.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Takeyoshi Masuda, Keiji Wada, Masato Tsumori
  • Patent number: 8686435
    Abstract: A silicon carbide layer is epitaxially formed on a main surface of a substrate. The silicon carbide layer is provided with a trench having a side wall inclined relative to the main surface. The side wall has an off angle of not less than 50° and not more than 65° relative to a {0001} plane. A gate insulating film is provided on the side wall of the silicon carbide layer. The silicon carbide layer includes: a body region having a first conductivity type and facing a gate electrode with the gate insulating film being interposed therebetween; and a pair of regions separated from each other by the body region and having a second conductivity type. The body region has an impurity density of 5×1016 cm?3 or greater. This allows for an increased degree of freedom in setting a threshold voltage while suppressing decrease of channel mobility.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Toru Hiyoshi, Keiji Wada
  • Patent number: 8686438
    Abstract: When viewed in a plan view, a termination region (TM) surrounds an element region (CL). A first side of a silicon carbide substrate (SB) is thermally etched to form a side wall (ST) and a bottom surface (BT) in the silicon carbide substrate (SB) at the termination region (TM). The side wall (ST) has a plane orientation of one of {0-33-8} and {0-11-4}. The bottom surface (BT) has a plane orientation of {000-1}. On the side wall (ST) and the bottom surface (BT), an insulating film (8T) is formed. A first electrode (12) is formed on the first side of the silicon carbide substrate (SB) at the element region (CL). A second electrode (14) is formed on a second side of the silicon carbide substrate (SB).
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Takeyoshi Masuda, Keiji Wada