Patents by Inventor Keiko Albessard

Keiko Albessard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220302609
    Abstract: A connection structure of a superconducting layer of an embodiment incudes a first superconducting member including a first superconducting layer, and extends in a first direction, a second superconducting member including a second superconducting layer facing the first superconducting layer, and extends in the first direction, the second superconducting member having a first region, a second region, and a third region which is separated in the second direction from the second region, and a connection layer that contains a rare earth element (RE), barium (Ba), copper (Cu), and oxygen (O), and connects the first superconducting layer and the second superconducting layer. The first superconducting layer is present in a third direction between the second region and the third region, the third direction being perpendicular to the first direction and perpendicular to the second direction.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 22, 2022
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yasushi HATTORI, Tomoko EGUCHI, Masaya HAGIWARA, Keiko ALBESSARD
  • Publication number: 20220199887
    Abstract: A connection structure for a superconducting layer according to an embodiment includes a first superconducting layer; a second superconducting layer; and a connection layer disposed between the first superconducting layer and the second superconducting layer, the connection layer including crystal grains containing a rare earth element (RE), barium (Ba), copper (Cu), and oxygen (O), the crystal grains having a grain size distribution including a bimodal distribution. The bimodal distribution includes a first distribution including a first peak and a second distribution including a second peak. A first grain size corresponding to the first peak is larger than a second grain size corresponding to the second peak. Among the crystal grains, crystal grains having a grain size corresponding to the first distribution include a crystal grain having a plate shape or a flat shape.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 23, 2022
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masaya Hagiwara, Tomoko Eguchi, Keiko Albessard, Yasushi Hattori
  • Patent number: 11355416
    Abstract: A structure includes: a ? silicon nitride crystal phase; and a Y2MgSi2O5N crystal phase. The structure gives a X-ray diffraction pattern by a ?-2? method, the pattern having a ratio of a peak intensity of a (22-1) plane of the Y2MgSi2O5N crystal phase to a peak intensity of a (200) plane of the ? silicon nitride crystal phase, the peak intensity of the (200) plane being determined at a position of 2?=27.0±1°, the peak intensity of the (22-1) plane being determined at a position of 2?=30.3±1°, and the ratio being 0.001 or more and 0.01 or less.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: June 7, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi Fukuda, Koichi Harada, Yasushi Hattori, Maki Yonetsu, Kenji Essaki, Keiko Albessard, Yasuhiro Goto
  • Patent number: 11300693
    Abstract: The embodiments provide a radiation detection material emitting fluorescence with high intensity and short lifetime, and also provide a radiation detection device. The polycrystalline radiation detection material of the embodiment is represented by the following formula (1) TlM1-x-yRxX3-z??(1). In the formula, M is at least one metal element selected form the group consisting of Ca, Sr, Ba and Mg; R is at least one luminescence center element selected form the group consisting of Ce, Pr, Yb and Nd; X is at least one halogen element selected form the group consisting of Cl, Br and F; and x, y and z are numbers satisfying the conditions of 0?x?0.5, ?0.1?y?0.1, and ?0.5?z?1, respectively.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 12, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi Fukuda, Keiko Albessard, Kenji Essaki
  • Publication number: 20210296205
    Abstract: A structure includes: a ? silicon nitride crystal phase; and a Y2MgSi2O5N crystal phase. The structure gives a X-ray diffraction pattern by a ?-2? method, the pattern having a ratio of a peak intensity of a (22-1) plane of the Y2MgSi2O5N crystal phase to a peak intensity of a (200) plane of the ? silicon nitride crystal phase, the peak intensity of the (200) plane being determined at a position of 2?=27.0±1°, the peak intensity of the (22-1) plane being determined at a position of 2?=30.3±1°, and the ratio being 0.001 or more and 0.01 or less.
    Type: Application
    Filed: August 31, 2020
    Publication date: September 23, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi FUKUDA, Koichi HARADA, Yasushi HATTORI, Maki YONETSU, Kenji ESSAKI, Keiko ALBESSARD, Yasuhiro GOTO
  • Publication number: 20210199818
    Abstract: The embodiments provide a radiation detection material emitting fluorescence with high intensity and short lifetime, and also provide a radiation detection device. The polycrystalline radiation detection material of the embodiment is represented by the following formula (1) TlM1-x-yRxX3-z??(1). In the formula, M is at least one metal element selected form the group consisting of Ca, Sr, Ba and Mg; R is at least one luminescence center element selected form the group consisting of Ce, Pr, Yb and Nd; X is at least one halogen element selected form the group consisting of Cl, Br and F; and x, y and z are numbers satisfying the conditions of 0?x?0.5, ?0.1?y?0.1, and ?0.5?z?1, respectively.
    Type: Application
    Filed: September 8, 2020
    Publication date: July 1, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi FUKUDA, Keiko ALBESSARD, Kenji ESSAKI
  • Publication number: 20210166989
    Abstract: According to one embodiment, a structure according to the embodiment includes a ? type silicon nitride type crystal phase and a Y2Si3O3N4 type crystal phase. In an X-ray diffraction pattern according to a ?-2? method of the structure, a ratio of a second peak intensity being maximum and appearing at 2?=31.93±0.1° with respect to a first peak intensity being maximum and appearing at 2?=27.03±0.1° is 0.005 or more and 0.20 or less.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 3, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi FUKUDA, Koichi HARADA, Kenji ESSAKI, Yasushi HATTORI, Yasuhiro GOTO, Keiko ALBESSARD, Maki YONETSU
  • Patent number: 10711186
    Abstract: Embodiments of the present invention provide a phosphor improved in the emission intensity maintenance ratio without impairing the emission intensity and further a light-emitting device employing that phosphor. The phosphor is activated by manganese and has a basic structure comprising at least one element selected from the group consisting of potassium, sodium and calcium; at least one element selected from the group consisting of silicon and titanium; and fluorine. In an IR absorption spectrum of the phosphor, the intensity ratio of the peak in 3570 to 3610 cm?1 to that in 1200 to 1240 cm?1 is 0.1 or less.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 14, 2020
    Assignees: Kabushiki Kaisha Toshiba, TOSHIBA MATERIALS CO., LTD.
    Inventors: Ryosuke Hiramatsu, Keiko Albessard, Kunio Ishida, Yasushi Hattori, Masahiro Kato
  • Patent number: 10519368
    Abstract: A red-light emitting phosphor is provided, having a basic composition represented by Ka(Si1-x,Mnx)Fb and also having a particular Raman spectrum, wherein the intensity ratio I1/I0, which is a ratio of (I1) the peak in a Raman shift of 600±10 cm?1 assigned to Mn—F bonds in the crystal to that (I0) in a Raman shift of 650±10 cm?1 assigned to Si—F bonds in the crystal, is 0.09 to 0.22. This phosphor is produced by bringing a silicon source in contact with an aqueous reaction solution containing potassium permanganate and hydrogen fluoride, wherein a molar ratio of hydrogen fluoride to potassium permanganate is 87 to 127.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 31, 2019
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Ryosuke Hiramatsu, Jun Tamura, Kunio Ishida, Keiko Albessard, Masahiro Kato
  • Publication number: 20190088384
    Abstract: A thermally conductive insulator consisting essentially of a silicon nitride member, comprise: a first region provided 10 ?m or more away from a first surface of the member along a depth direction in a section vertical to the first surface and containing at least one substance selected from the group consisting of silicon carbide and a carbon material; and a second region provided between the first surface and the first region. A concentration of silicon nitride of the second region is higher than a concentration of silicon nitride of the first region.
    Type: Application
    Filed: March 9, 2018
    Publication date: March 21, 2019
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takayuki FUKUSAWA, Keiko ALBESSARD, Takashi KUBOKI, Yasuhiro GOTO
  • Patent number: 10032967
    Abstract: A phosphor comprising: a chemical composition expressed by the following formula (K1-p, Mp)a(Si1-y, Mny)Fb (M is at least one element selected from the group consisting of Na and Ca, and p satisfies 0?p?0.01, a satisfies 1.5?a?2.5, b satisfies 5.5?b?6.5, and y satisfies 0<y?0.1), Wherein the phosphor satisfies I (2,500-3,000)/I (1,200-1,240)<0.04, when I (1,200-1,240) is an intensity of a highest peak in a range of 1,200-1,240 cm?1 and I (2,500-3,000) is an intensity of a highest peak in a range of 2,500-3,000 cm?1 in an infrared spectrum.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: July 24, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Albessard, Ryosuke Hiramatsu, Kunio Ishida, Yasushi Hattori, Masahiro Kato
  • Patent number: 10020427
    Abstract: The present invention provides a red-light emitting phosphor that exhibits high luminous efficacy and emits light when excited by light having an emission peak in the blue region; and a method for manufacturing said phosphor. The phosphor represented by general formula (A): a(Si1-x-y,Tix,Mny)Fb and also characterized in that the half-band width of a diffraction pattern attributed to the (400) plane is not less than 0.2° determined by X-ray powder diffractometry. This phosphor can be manufactured by preparing a reaction solution consisting of an aqueous solution containing potassium permanganate and hydrogen fluoride, immersing a silicon source in said reaction solution, and reacting them for 20 to 80 minutes.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: July 10, 2018
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Ryosuke Hiramatsu, Keiko Albessard, Naotoshi Matsuda, Masahiro Kato
  • Patent number: 9954146
    Abstract: The present invention provides a red-light emitting phosphor having high luminous efficacy and also a manufacturing method thereof. The phosphor is a red-light emitting phosphor mainly comprising potassium fluorosilicate and having a basic surface composition represented by the formula (A): KaSiFb. The disclosed phosphor is characterized by being activated by manganese and also characterized in that the amount of manganese on the surface is not more than 0.2 mol % based on the total amount of all the elements on the surface. This phosphor can be manufactured by washing with a weak acid a product obtained by placing a silicon source to react in contact with a reaction solution containing potassium permanganate.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 24, 2018
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD
    Inventors: Ryosuke Hiramatsu, Keiko Albessard, Naotoshi Matsuda, Masahiro Kato
  • Patent number: 9929321
    Abstract: The embodiment of the present disclosure provides a phosphor improved in the emission intensity maintenance ratio without impairing the emission intensity. The phosphor is a silicofluoride phosphor and shows an IR absorption spectrum satisfying the conditions of 0?I2/I1?0.01 and 6.7?(I3/I1)/CMn. In those conditional formulas, I1, I2 and I3 are intensities of the maximum peaks in the ranges of 1200 to 1240 cm?1, 3570 to 3610 cm?1 and 635 to 655 cm?1, respectively, and CMn is a weight percent of Mn contained the phosphor.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: March 27, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi Fukuda, Keiko Albessard, Yasushi Hattori, Seiichi Suenaga
  • Publication number: 20180040784
    Abstract: The embodiment of the present disclosure provides a phosphor improved in the emission intensity maintenance ratio without impairing the emission intensity. The phosphor is a silicofluoride phosphor and shows an IR absorption spectrum satisfying the conditions of 0?I2/I1?0.01 and 6.7?(I3/I1)/CMn. In those conditional formulas, I1, I2 and I3 are intensities of the maximum peaks in the ranges of 1200 to 1240 cm?1, 3570 to 3610 cm?1 and 635 to 655 cm?1, respectively, and CMn is a weight percent of Mn contained the phosphor.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 8, 2018
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi FUKUDA, Keiko ALBESSARD, Yasushi HATTORI, Seiichi SUENAGA
  • Publication number: 20180006194
    Abstract: A phosphor comprising: a chemical composition expressed by the following formula (K1-p, Mp)a(Si1-y, Mny)Fb (M is at least one element selected from the group consisting of Na and Ca, and p satisfies 0?p?0.01, a satisfies 1.5?a?2.5, b satisfies 5.5?b?6.5, and y satisfies 0<y?0.1), Wherein the phosphor satisfies I (2,500-3,000)/I (1,200-1,240)<0.04, when I (1,200-1,240) is an intensity of a highest peak in a range of 1,200-1,240 cm?1 and I (2,500-3,000) is an intensity of a highest peak in a range of 2,500-3,000 cm?1 in an infrared spectrum.
    Type: Application
    Filed: March 9, 2017
    Publication date: January 4, 2018
    Applicant: kabushiki Kaisha Toshiba
    Inventors: Keiko ALBESSARD, Ryosuke HIRAMATSU, Kunio ISHIDA, Yasushi HATTORI, Masahiro KATO
  • Publication number: 20170335183
    Abstract: Embodiments of the present invention provide a phosphor improved in the emission intensity maintenance ratio without impairing the emission intensity and further a light-emitting device employing that phosphor. The phosphor is activated by manganese and has a basic structure comprising at least one element selected from the group consisting of potassium, sodium and calcium; at least one element selected from the group consisting of silicon and titanium; and fluorine. In an IR absorption spectrum of the phosphor, the intensity ratio of the peak in 3570 to 3610 cm?1 to that in 1200 to 1240 cm?1 is 0.1 or less.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 23, 2017
    Applicants: Kabushiki Kaisha Toshiba, TOSHIBA MATERIALS CO., LTD.
    Inventors: Ryosuke HIRAMATSU, Keiko ALBESSARD, Kunio ISHIDA, Yasushi HATTORI, Masahiro KATO
  • Patent number: 9520540
    Abstract: A light-emitting device of an embodiment includes a light-emitting element emitting blue excitation light and a first phosphor excited by the blue excitation light and emitting fluorescence. A peak wavelength of the fluorescence is not shorter than 520 nm and shorter than 660 nm and the peak wavelength of the fluorescence shifting in the same direction when a peak wavelength of the blue excitation light shifts. The first phosphor is one of a yellow phosphor emitting yellow fluorescence, a green phosphor emitting green fluorescence, a yellow-green/yellow phosphor emitting yellow-green/yellow fluorescence and a red phosphor emitting red fluorescence.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: December 13, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kunio Ishida, Keiko Albessard, Yasushi Hattori, Iwao Mitsuishi, Yumi Fukuda, Ryosuke Hiramatsu, Aoi Okada, Masahiro Kato
  • Publication number: 20160340577
    Abstract: To provide a red-light emitting phosphor having high luminous efficacy, also a light-emitting device, and further a manufacturing method of the phosphor. Disclosed is a red-light emitting phosphor having a basic composition represented by Ka(Si1-x,Mnx)Fb and also having a particular Raman spectrum. In the spectrum, the intensity ratio of the peak in a Raman shift of 600±10 cm?1 assigned to Mn—F bonds in the crystal to that in a Raman shift of 650±10 cm?1 assigned to Si—F bonds in the crystal is 0.09 to 0.22. This phosphor can be produced by bringing a silicon source in contact with a reaction solution containing potassium permanganate and hydrogen fluoride in such amounts that the molar ratio of hydrogen fluoride to potassium permanganate is 87 to 127.
    Type: Application
    Filed: June 7, 2016
    Publication date: November 24, 2016
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Ryosuke HIRAMATSU, Jun TAMURA, Kunio ISHIDA, Keiko ALBESSARD, Masahiro KATO
  • Publication number: 20160083649
    Abstract: An embodiment is to provide a phosphor that has favorable temperature characteristics, that can emit yellow light with a wide half-width emission spectrum, and that has high quantum efficiency. The phosphor emits yellow light when excited with light having a luminescence peak in a wavelength range of 250 to 500 nm, and has a crystal structure that is substantially identical to the crystal structure of Sr2Al3Si7ON13. The half-width of a peak at a diffraction peak position 2? in a range of 35.2 to 35.6, detected in X-ray diffraction of the phosphor according to Bragg-Brendano method using a Cu-K? line, is 0.10° or less.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 24, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Iwao MITSUISHI, Masahiro KATO, Yasushi HATTORI, Yumi FUKUDA, Keiko ALBESSARD