Patents by Inventor Keith E. Fogel

Keith E. Fogel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230397506
    Abstract: Systems and techniques that facilitate spurious junction prevention via in-situ ion milling are provided. In various embodiments, a method can comprise forming a tunnel barrier of a Josephson junction on a substrate during a shadow evaporation process. In various instances, the method can further comprise etching an exposed portion of the tunnel barrier during the shadow evaporation process. In various embodiments, the shadow evaporation process can comprise patterning a resist stack onto the substrate. In various instances, the etching the exposed portion of the tunnel barrier can leave a protected portion of the tunnel barrier within a shadow of the resist stack. In various instances, the shadow of the resist stack can be based on a direction of the etching the exposed portion of the tunnel barrier.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jeng-Bang Yau, Keith E. Fogel, John Bruley, Markus Brink, Benjamin Wymore
  • Patent number: 11697889
    Abstract: A structure including a three-dimensionally stretchable single crystalline semiconductor membrane located on a substrate is provided. The structure is formed by providing a three-dimensional (3D) wavy silicon germanium alloy layer on a silicon handler substrate. A single crystalline semiconductor material membrane is then formed on a physically exposed surface of the 3D wavy silicon germanium alloy layer. A substrate is then formed on a physically exposed surface of the single crystalline semiconductor material membrane. The 3D wavy silicon germanium alloy layer and the silicon handler substrate are thereafter removed providing the structure.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: July 11, 2023
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Keith E. Fogel
  • Patent number: 11502171
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. De Souza, Keith E. Fogel, JeeHwan Kim, Devendra K. Sadana
  • Patent number: 11349029
    Abstract: A semiconductor structure is provided that includes non-metal semiconductor alloy containing contact structures for field effect transistors (FETs), particularly p-type FETs. Notably, each non-metal semiconductor alloy containing contact structure includes a highly doped epitaxial semiconductor material directly contacting a topmost surface of a source/drain region of the FET, a titanium liner located on the highly doped epitaxial semiconductor material, a diffusion barrier liner located on the titanium liner, and a contact metal portion located on the diffusion barrier liner.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 31, 2022
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Keith E. Fogel, Nicole S. Munro, Alexander Reznicek
  • Patent number: 11201212
    Abstract: A semiconductor device includes a monocrystalline substrate configured to form a channel region between two recesses in the substrate. A gate conductor is formed on a passivation layer over the channel region. Dielectric pads are formed in a bottom of the recesses and configured to prevent leakage to the substrate. Source and drain regions are formed in the recesses on the dielectric pads from a deposited non-crystalline n-type material with the source and drain regions making contact with the channel region.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: December 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 11201242
    Abstract: A semiconductor structure is provided that includes non-metal semiconductor alloy containing contact structures for field effect transistors (FETs), particularly p-type FETs. Notably, each non-metal semiconductor alloy containing contact structure includes a highly doped epitaxial semiconductor material directly contacting a topmost surface of a source/drain region of the FET, a titanium liner located on the highly doped epitaxial semiconductor material, a diffusion barrier liner located on the titanium liner, and a contact metal portion located on the diffusion barrier liner.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 14, 2021
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Keith E. Fogel, Nicole S. Munro, Alexander Reznicek
  • Patent number: 11094842
    Abstract: A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: August 17, 2021
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Bahman Hekmatshoar-Tabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20210151564
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Joel P. De Souza, Keith E. Fogel, JeeHwan Kim, Devendra K. Sadana
  • Patent number: 11011655
    Abstract: A photovoltaic device and method include forming a plurality of pillar structures in a substrate, forming a first electrode layer on the pillar structures and forming a continuous photovoltaic stack including an N-type layer, a P-type layer and an intrinsic layer on the first electrode. A second electrode layer is deposited over the photovoltaic stack such that gaps or fissures occur in the second electrode layer between the pillar structures. The second electrode layer is wet etched to open up the gaps or fissures and reduce the second electrode layer to form a three-dimensional electrode of substantially uniform thickness over the photovoltaic stack.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10957694
    Abstract: A method of forming a semiconductor device that includes providing regions of epitaxial oxide material on a substrate of a first lattice dimension, wherein regions of the epitaxial oxide material separate regions of epitaxial semiconductor material having a second lattice dimension are different than the first lattice dimension to provide regions of strained semiconductor. The regions of the strained semiconductor material are patterned to provide regions of strained fin structures. The epitaxial oxide that is present in the gate cut space obstructs relaxation of the strained fin structures. A gate structure is formed on a channel region of the strained fin structures separating source and drain regions of the fin structures.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karthik Balakrishnan, Keith E. Fogel, Sivananda K. Kanakasabapathy, Alexander Reznicek
  • Patent number: 10937789
    Abstract: A semiconductor structure is provided in which a nanosheet device is formed laterally adjacent, but in proximity to, an embedded dynamic random access memory (eDRAM) cell. The eDRAM cell and the nanosheet device are connected by a doped polycrystalline semiconductor material that is formed during the epitaxial growth of doped single crystalline semiconductor source/drain regions of the nanosheet device. An eDRAM cut mask is used to remove unwanted semiconductor material from regions not including the eDRAM cell and the nanosheet device.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Muthumanickam Sankarapandian, Donald F. Canaperi, Keith E. Fogel
  • Patent number: 10937864
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10892333
    Abstract: A method of making a GaN device includes: forming a GaN substrate; forming a plurality of spaced-apart first metal contacts directly on the GaN substrate; forming a layer of insulating GaN on the exposed portions of the upper surface; forming a stressor layer on the contacts and the layer of insulating GaN; forming a handle substrate on the first surface of the stressor layer; spalling the GaN substrate that is located beneath the stressor layer to separate a layer of GaN and removing the handle substrate; bonding the stressor layer to a thermally conductive substrate; forming a plurality of vertical channels through the GaN to define a plurality of device structures; removing the exposed portions of the layer of insulating GaN to electrically isolate the device structures; forming an ohmic contact layer on the second surface; and forming second metal contacts on the ohmic contact layer.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra K. Sadana
  • Patent number: 10763386
    Abstract: A photovoltaic device that includes an upper cell that absorbs a first range of wavelengths of light and a bottom cell that absorbs a second range of wavelengths of light. The bottom cell includes a heterojunction comprising a crystalline germanium containing (Ge) layer. At least one surface of the crystalline germanium (Ge) containing layer is in contact with a silicon (Si) containing layer having a larger band gap than the crystalline (Ge) containing layer.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 1, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10756220
    Abstract: A photovoltaic device includes a substrate having a plurality of hole shapes formed therein. The plurality of hole shapes each have a hole opening extending from a first surface and narrowing with depth into the substrate. The plurality of hole shapes form a hole pattern on the first surface, and the hole pattern includes flat areas separating the hole shapes on the first surface. A photovoltaic device stack is formed on the first surface and extends into the hole shapes. Methods are also provided.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10741706
    Abstract: A photovoltaic device includes a substrate layer having a plurality of three-dimensional structures formed therein providing a textured profile. A first electrode is formed over the substrate layer and extends over the three-dimensional structures including non-planar surfaces. The first electrode has a thickness configured to maintain the textured profile, and the first electrode includes a transparent conductive material having a dopant metal activated within the transparent conductive material. A continuous photovoltaic stack is conformally formed over the first electrode, and a second electrode is formed on the photovoltaic stack.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10672929
    Abstract: A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Bahman Hekmatshoar-Tabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10651273
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20200123677
    Abstract: A structure including a three-dimensionally stretchable single crystalline semiconductor membrane located on a substrate is provided. The structure is formed by providing a three-dimensional (3D) wavy silicon germanium alloy layer on a silicon handler substrate. A single crystalline semiconductor material membrane is then formed on a physically exposed surface of the 3D wavy silicon germanium alloy layer. A substrate is then formed on a physically exposed surface of the single crystalline semiconductor material membrane. The 3D wavy silicon germanium alloy layer and the silicon handler substrate are thereafter removed providing the structure.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Keith E. Fogel
  • Publication number: 20200127132
    Abstract: A semiconductor structure is provided that includes non-metal semiconductor alloy containing contact structures for field effect transistors (FETs), particularly p-type FETs. Notably, each non-metal semiconductor alloy containing contact structure includes a highly doped epitaxial semiconductor material directly contacting a topmost surface of a source/drain region of the FET, a titanium liner located on the highly doped epitaxial semiconductor material, a diffusion barrier liner located on the titanium liner, and a contact metal portion located on the diffusion barrier liner.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Veeraraghavan S. Basker, Keith E. Fogel, Nicole S. Munro, Alexander Reznicek