Patents by Inventor Keith Perkins
Keith Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11938249Abstract: The present technology relates generally to endovascular prostheses. More particularly, the disclosure relates to endovascular prostheses having an outer surface of a graft material thereof associated with a hydrogel composition, which may swell upon implantation within a blood vessel, thereby mediating various complications associated with endovascular procedures. The hydrogel compositions can also include various stabilizing polymers and active agents to further aid their use in the body.Type: GrantFiled: July 14, 2020Date of Patent: March 26, 2024Assignee: Medtronic Vascular, Inc.Inventors: Jeffery Argentine, Matt Petruska, Keith Perkins, Samuel Robaina, Darren Galligan, Rajesh Radhakrishnan
-
Publication number: 20240032934Abstract: A method for creating an engineered landing zone includes delivering a landing zone prosthesis in a radially compressed configuration to a site of an aneurysm within a vessel. The landing zone prosthesis includes a frame, an engineered landing zone, and graft material coupled at a first end to the frame and at a second end to the engineered landing zone. The method further includes radially expanding the frame at the site of the aneurysm while the engineered landing zone remains in the radially compressed configuration longitudinally spaced from the frame, securing to the vessel, longitudinally translating the engineered landing zone such that the engineered landing zone is at least partially disposed within the frame, and radially expanding the engineered landing zone.Type: ApplicationFiled: July 29, 2022Publication date: February 1, 2024Inventors: Keith Perkins, Rosamaria Tricarico, Sohrab Sethna
-
Patent number: 11850173Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.Type: GrantFiled: June 29, 2021Date of Patent: December 26, 2023Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Patent number: 11841338Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.Type: GrantFiled: September 25, 2020Date of Patent: December 12, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
-
Patent number: 11826226Abstract: The techniques of this disclosure generally relate to a modular stent device including a main body configured to be deployed in the ascending aorta, a bypass gate configured to be deployed in the aorta, and a bifurcated contra limb. The bifurcated contra limb includes a single proximal limb that is bifurcated (split) into a first distal limb and a second distal limb. By forming the bifurcated contra limb to include a single proximal limb that is bifurcated into the distal limbs, guiding a guide wire into the relatively larger opening of bifurcated contra limb at a proximal end is simpler than guiding a guidewire into two smaller limbs extending distally from main body. Accordingly, cannulation of the bifurcated contra limb is relatively simple thus simplifying the procedure. In addition, the parallel design mimics anatomical blood vessel bifurcations to limit flow disruptions.Type: GrantFiled: July 31, 2019Date of Patent: November 28, 2023Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Patent number: 11806224Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.Type: GrantFiled: November 2, 2021Date of Patent: November 7, 2023Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Patent number: 11789004Abstract: A sensitive and selective, in-line method to measure and validate the sulfur content at ppb levels in both the liquid and gas phase of an analyte. The method includes patterning graphene, for example to form a mesa structure comprising horizontal or vertical lines or an array of multidentate star features; functionalizing the patterned graphene and attaching nanoparticles to the functionalized graphene to form a device; exposing the device to an analyte in the gas or liquid phase; detecting a change in electrical response when sulfur is present in the analyte; and recovering the device for future use. Also disclosed is the related sulfur detector.Type: GrantFiled: April 12, 2021Date of Patent: October 17, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Evgeniya H. Lock, F. Keith Perkins, Anthony K. Boyd, Rachael L. Myers-Ward, David Kurt Gaskill, Anindya Nath
-
Patent number: 11751988Abstract: A prosthetic assembly configured for endovascular placement within an aortic arch and method of use thereof. The prosthetic assembly includes a proximal aortic stent-graft prosthesis configured to be positioned within a proximal portion of the aortic arch adjacent to the brachiocephalic artery, a distal aortic stent-graft prosthesis configured to be positioned within a distal portion of the aortic arch adjacent to the left subclavian artery, a first branch stent-graft prosthesis configured to be positioned within the brachiocephalic artery and a second branch stent-graft prosthesis configured to be positioned in one of the left common carotid and the left subclavian artery. When deployed, a proximal end of the first branch stent-graft prosthesis is disposed within a lumen of the proximal aortic stent-graft prosthesis to proximally displace the ostium of the brachiocephalic artery.Type: GrantFiled: November 23, 2022Date of Patent: September 12, 2023Assignee: MEDTRONIC VASCULAR, INC.Inventors: Keith Perkins, Dennis Brooks, Mark Stiger
-
Patent number: 11684476Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.Type: GrantFiled: March 8, 2021Date of Patent: June 27, 2023Assignee: Medtronic Vascular, Inc.Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
-
Patent number: 11672645Abstract: The techniques of this disclosure generally relate to an assembly including a single multibranch stent device. The single multibranch stent device includes a main body, a proximal coupling extending radially from the main body, and a distal coupling extending radially from the main body. The main body, the proximal coupling, and the distal coupling are permanently coupled to one another and the single multibranch stent device is a single piece. By forming the single multibranch stent device as a single piece, the single multibranch stent device can be deployed in a single deployment thus simplifying the deployment procedure.Type: GrantFiled: July 20, 2021Date of Patent: June 13, 2023Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Patent number: 11617641Abstract: Systems and methods for building a landing zone for an endovascular procedure are described. This procedure is “hybrid” in that it involves both direct access (e.g., sternotomy or partial sternotomy) to the site for installation of the landing zone, as well as endovascular installation of a TAVR or TEVAR device (e.g., stent graft) once the landing zone is installed. The landing zone is installed by wrapping a landing band around a portion of a vessel. The landing band may be selected to be fixed at a diameter so that it inhibits any expansion of the vessel, and also supports a later-installed TAVR or TEVAR device. The TAVR or TEVAR device is then endovascularly delivered to the vessel and deployed therein. The device expands until it contacts the vessel, which is supported from the outside by the landing band, which thus constrains and supports the device from outside.Type: GrantFiled: June 22, 2021Date of Patent: April 4, 2023Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Mark Stiger, Steven Claessens
-
Publication number: 20230019006Abstract: A method for providing access to a development and execution (D&E) platform for development of industrial software, including providing while the D&E platform is being accessed a GUI with a development tool having process flow and code editors and an execution tool and arranging two or more programming blocks of a process flow responsive to input from an author when the process flow editor is accessed. The two or more programming blocks, when arranged, are configured to be executed. The method further includes editing source code of the two or more programming blocks responsive to input from the author when the code editor is accessed, compiling at least one of the two or more programming blocks responsive to input from the author when the execution tool is accessed, and executing the compiled at least one programming block responsive to input from the author when the execution tool is accessed.Type: ApplicationFiled: July 12, 2022Publication date: January 19, 2023Applicant: Schneider Electric Systems USA, Inc.Inventors: José Gabriel Villarroel Humérez, Ondrej Taranda, Stephen Gray, Keith Perkins, Tamer Omran Hussein Omran
-
Patent number: 11534285Abstract: A prosthetic assembly configured for endovascular placement within an aortic arch and method of use thereof. The prosthetic assembly includes a proximal aortic stent-graft prosthesis configured to be positioned within a proximal portion of the aortic arch adjacent to the brachiocephalic artery, a distal aortic stent-graft prosthesis configured to be positioned within a distal portion of the aortic arch adjacent to the left subclavian artery, a first branch stent-graft prosthesis configured to be positioned within the brachiocephalic artery and a second branch stent-graft prosthesis configured to be positioned in one of the left common carotid and the left subclavian artery. When deployed, a proximal end of the first branch stent-graft prosthesis is disposed within a lumen of the proximal aortic stent-graft prosthesis to proximally displace the ostium of the brachiocephalic artery.Type: GrantFiled: May 28, 2020Date of Patent: December 27, 2022Assignee: MEDTRONIC VASCULAR, INC.Inventors: Keith Perkins, Dennis Brooks, Mark Stiger
-
Publication number: 20220192814Abstract: The techniques of this disclosure generally relate to modular stent device and method of deploying the same. The method includes introducing a delivery system including the modular stent device via supra aortic access. The delivery system is advanced into the ascending aorta. Once positioned, the modular stent device is deployed from the delivery system such that an artery leg of the modular stent device engages the brachiocephalic artery and a bypass gate engages the aorta, wherein the artery leg partially collapses the bypass gate. The artery leg has a greater radial force than the bypass gate such that the artery leg remains un-collapsed and opened. Accordingly, blood flow through the artery leg and perfusion of the brachiocephalic artery and preservation of blood flow to cerebral territories including the brain is insured.Type: ApplicationFiled: March 10, 2022Publication date: June 23, 2022Inventors: Keith Perkins, Zachary Borglin, Mathew A. Haggard
-
Patent number: 11357612Abstract: A stent graft assembly with a sacrificial entry/exit port is disclosed. A first sacrificial port extends from a first branch stent graft and is configured to face a second branch stent graft when the stent graft assembly is in an expanded configuration. Likewise, a second sacrificial port can be provided, and can extend from the second branch stent graft and configured to face the first branch stent graft when the stent graft assembly is in the expanded configuration. The first and optional second sacrificial ports are configured to transition between (i) an open configuration to enable a guidewire or other surgical tool to pass from the first branch stent graft to the second branch stent graft while bypassing the main body, and (ii) a closed configuration to inhibit blood flow therethrough.Type: GrantFiled: July 16, 2020Date of Patent: June 14, 2022Assignee: Medtronic Vascular, Inc.Inventors: Adam Shipley, Timothy Bertini, Keith Perkins, Gian Pellegrini
-
Patent number: 11344402Abstract: The techniques of this disclosure generally relate to a stent-graft system including a bifurcated stent-graft, a first bifurcating branch device, and a first branch extension. The bifurcated stent-graft includes a body, a first branch limb, and a second branch limb. The first bifurcating branch device includes a body segment coupled to the first branch limb of the bifurcated stent-graft, a first branch limb, and a second branch limb. The first branch extension is within the first branch limb of the first bifurcating branch device and within an external iliac artery. The first bifurcating branch device has a wide patient applicability since the treatment can be extended proximal to the anatomical iliac bifurcation and is not limited by the common iliac artery length. The stent-graft system is suitable to treat a wide range of internal and external iliac artery diameters.Type: GrantFiled: April 22, 2020Date of Patent: May 31, 2022Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Travis Rowe, Mark Stiger, Mark Young, Julie Benton, Steven Claessens
-
Patent number: 11324582Abstract: The techniques of this disclosure generally relate to an assembly including a docking graft. The docking graft includes a main graft defining a main lumen, a first internal lumen within the main lumen, a second internal lumen within the main lumen, and a main docking lumen within the main lumen. The first and second internal lumens are configured to receive first and second bridging stent graft therein. The main docking lumen is configured to receive a tube graft therein. The first internal lumen, the second internal lumen, and the main docking lumen being parallel to one another and extending an entire length of the docking graft when the docking graft is in a relaxed configuration. The docking graft forms the foundation, or anchor device, for attachment of the first bridging stent graft, the second bridging stent graft, and the tube graft within the aorta.Type: GrantFiled: September 27, 2019Date of Patent: May 10, 2022Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Mark Stiger, Travis Rowe
-
Patent number: 11304794Abstract: The techniques of this disclosure generally relate to modular stent device and method of deploying the same. The method includes introducing a delivery system including the modular stent device via supra aortic access. The delivery system is advanced into the ascending aorta. Once positioned, the modular stent device is deployed from the delivery system such that an artery leg of the modular stent device engages the brachiocephalic artery and a bypass gate engages the aorta, wherein the artery leg partially collapses the bypass gate. The artery leg has a greater radial force than the bypass gate such that the artery leg remains un-collapsed and opened. Accordingly, blood flow through the artery leg and perfusion of the brachiocephalic artery and preservation of blood flow to cerebral territories including the brain is insured.Type: GrantFiled: March 28, 2019Date of Patent: April 19, 2022Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mathew A. Haggard
-
Patent number: 11191633Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.Type: GrantFiled: August 29, 2019Date of Patent: December 7, 2021Assignee: Medtronic Vascular, Inc.Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
-
Publication number: 20210353442Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed via supra aortic access through the brachiocephalic artery. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the left common carotid artery and the left subclavian artery.Type: ApplicationFiled: August 2, 2021Publication date: November 18, 2021Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young