Patents by Inventor Keith Perkins

Keith Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180153677
    Abstract: A prosthetic assembly configured for endovascular placement within an aortic arch and method of use thereof. The prosthetic assembly includes a proximal aortic stent-graft prosthesis configured to be positioned within a proximal portion of the aortic arch adjacent to the brachiocephalic artery, a distal aortic stent-graft prosthesis configured to be positioned within a distal portion of the aortic arch adjacent to the left subclavian artery, a first branch stent-graft prosthesis configured to be positioned within the brachiocephalic artery and a second branch stent-graft prosthesis configured to be positioned in one of the left common carotid and the left subclavian artery. When deployed, a proximal end of the first branch stent-graft prosthesis is disposed within a lumen of the proximal aortic stent-graft prosthesis to proximally displace the ostium of the brachiocephalic artery.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 7, 2018
    Inventors: Keith Perkins, Dennis Brooks, Mark Stiger
  • Publication number: 20180052145
    Abstract: A wastewater analyser assembly comprises an overflow reservoir for receiving wastewater from an input. The overflow reservoir comprises a weir for wastewater to overflow and exit the overflow reservoir. There is a wastewater sample outlet in the overflow reservoir for passing wastewater from within the overflow reservoir to an analyser.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 22, 2018
    Inventors: Keith Perkins, Christopher Charles Back
  • Publication number: 20180049861
    Abstract: The present technology relates generally to endovascular prostheses. More particularly, the disclosure relates to endovascular prostheses having a graft material and a stent structure attached with a suture, or a seam formed by a suture, where the suture has a coating that expands upon exposure to body fluids. The expansion allows for the coating to fill suture holes in the graft material so as to reduce or eliminate endoleaks.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 22, 2018
    Inventors: Jeffrey Mitchell, Keith Perkins, Samuel Robaina, Rajesh Radhakrishnan
  • Publication number: 20180024085
    Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 25, 2018
    Applicant: The Government of the United States of America, as Represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20170360993
    Abstract: The present technology relates generally to endovascular prostheses. More particularly, the disclosure relates to endovascular prostheses having an outer surface of a graft material thereof associated with a hydrogel composition, which may swell upon implantation within a blood vessel, thereby mediating various complications associated with endovascular procedures. The hydrogel compositions can also include various stabilizing polymers and active agents to further aid their use in the body.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 21, 2017
    Inventors: Jeffery Argentine, Matt Petruska, Keith Perkins, Samuel Robaina, Darren Galligan, Rajesh Radhakrishnan
  • Publication number: 20170299544
    Abstract: A method of making a low dimensional material chemical vapor sensor comprising providing a monolayer of a transition metal dichalcogenide, applying the monolayer to a substrate, applying a PMMA film, defining trenches, and placing the device in a n-butyl lithium (nbl) bath. A low dimensional material chemical vapor sensor comprising a monolayer of a transition metal dichalcogenide, the monolayer applied to a substrate, a region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium, the region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium have transitioned from a semiconducting to metallic phase, metal contacts on the region or regions of the transition metal dichalcogenide that have been treated with the n-butyl lithium.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 19, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20170296325
    Abstract: A stent-graft prosthesis includes a generally tubular outer PTFE layer, a generally tubular helical stent, a generally tubular inner PTFE layer, and a suture or fabric support strip. The outer PTFE layer defines an outer layer lumen. The helical stent is disposed within the outer layer lumen and defines a stent lumen. The inner PTFE layer is disposed within the stent lumen and defines an inner layer lumen. The suture includes a suture first end coupled to a stent first end and a suture second end coupled to a stent second end, with the suture disposed between the outer PTFE layer and the inner PTFE layer. Alternatively, the fabric support strip is disposed between the outer and inner PTFE layers. The suture or fabric support strip may include a plurality of sutures or fabric support strips and may be spaced equally around a circumference of the inner PTFE layer.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 19, 2017
    Inventors: Joseph Marrocco, Mathew Haggard, Keith Perkins
  • Publication number: 20170281331
    Abstract: Endoluminal prosthetic devices having fluid-absorbable compositions for repair of vascular tissue defects, such as an aneurysm or dissection, are disclosed herein. A prosthesis for repairing an opening or cavity within a target vessel region configured in accordance herewith includes a tubular body sized to substantially cover the opening or cavity, and having channels formed in a wall thereof. The channels can include a fluid-absorbable composition deposited therein and which is configured to absorb fluid (e.g., blood) and swell within the channels, thereby providing radial expansion of the tubular body in situ.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Inventors: Keith Perkins, Matthew Petruska, Samuel Robaina, Darren Galligan, Rajesh Radhakrishnan
  • Publication number: 20170231749
    Abstract: A scaffolded stent-graft includes a graft material comprising an inner surface and an outer surface. The inner surface defines a lumen within the graft material. The scaffolded stent-graft further includes a scaffold comprising a mesh coupled to the graft material at the outer surface. The scaffold is configured to promote tissue ingrowth therein. In this manner, the scaffold enhances tissue integration into the scaffolded stent-graft. The tissue integration enhances biological fixation of the scaffolded stent-graft in vessels minimizing the possibility of endoleaks and migration.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 17, 2017
    Inventors: Keith Perkins, Jeffery Argentine, Matt Petruska, Samuel Robaina, Darren Galligan, Rajesh Radhakrishnan
  • Publication number: 20170156863
    Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
  • Patent number: 9393136
    Abstract: A variable zone high metal to vessel ratio stent includes a proximal high metal to vessel ratio zone, a central low metal to vessel ratio zone, and a distal high metal to vessel ratio zone. The proximal high metal to vessel ratio zone is deployed with fixation and sealing to healthy tissue of a main vessel superior to branch vessels and an aneurysm. The central low metal to vessel ratio zone is deployed directly on ostai of the branch vessels. However, as the central low metal to vessel ratio zone is highly permeable, blood flows from the main vessel through the central low metal to vessel ratio zone and into branch vessels.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 19, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Samuel Robaina, Jeffery Argentine, Walter Bruszewski, Andrew Kiehl
  • Publication number: 20150334050
    Abstract: The disclosed subject matter describes a method, system, apparatus, and storage medium for interfacing multiple communication systems via a partitionable router. The router has at least two partitions, each partition having a subset of the router's resources allocated to it. Software programs are executed within each partition using their respective allocated resources. The resources, and any subset thereof, may be allocated non-exclusively, exclusively, and/or non-linearly to the partitions. The router receives information and determines the format of the information. The router identifies the receiving party and transforms the received information into a format compatible for the receiving party. The router then transmits the converted information to the receiving party, where the transmitting and/or receiving party is one of the software programs.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 19, 2015
    Applicant: AvFinity, Inc
    Inventors: Stephen Perkins, Keith Perkins
  • Patent number: 9157842
    Abstract: A molecular concentrator comprising a thermal ratchet for driving molecules from one place to another. A plurality of linear, two-dimensional, and/or three-dimensional arrangements of heater structures are arranged on or suspended above a substrate. Each of the heater structures is configured to strongly sorb a vapor of interest when the heater structure is at room temperature and to rapidly desorb the vapor when the heater structure is at an elevated temperature. The vapor sorption of the individual heater structures is made selective by surface treatments, by monomolecular film depositions or by thicker absorbent polymer depositions. By selectively heating and cooling the heater structures, vapor molecules incident on the heater structures can be directed in a desired manner, e.g., from heater structures closest to a vapor-containing environment to a sensor.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: October 13, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Arthur W. Snow, F. Keith Perkins
  • Patent number: 9063063
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 23, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M Campbell, Glenn G. Jernigan, Berend T Jonker
  • Patent number: 9005270
    Abstract: A method includes covering ostai of branch vessels emanating from a main vessel and an aneurysm with a high metal to vessel ratio stent. A metal to vessel ratio of the high metal to vessel ratio stent is sufficiently high to encourage tissue ingrowth around the high metal to vessel ratio stent yet is sufficiently low to ensure perfusion of the branch vessels through the high metal to vessel ratio stent. The ingrowth of tissue provides secure fixation and sealing of the high metal to vessel ratio stent to the main vessel and remodels and essentially eliminates the aneurysm. Further, as the entire high metal to vessel ratio stent is permeably, the high metal to vessel ratio stent is deployed without having to rotationally position the high metal to vessel ratio stent.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Samuel Robaina, Jeffery Argentine, Walter Bruszewski, Andrew Kiehl
  • Patent number: 8986615
    Abstract: A molecular concentrator comprising a thermal ratchet for driving molecules from one place to another. A plurality of conducting wires are arranged on or suspended above a substrate. Each of the wires is configured to strongly sorb a vapor of interest when the wire is at room temperature and to rapidly desorb the vapor when the wire is at an elevated temperature. By selectively heating and cooling the wires, vapor molecules incident on the wires can be directed in a desired manner, e.g., from the wires closest to the vapor-containing environment to a sensor.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 24, 2015
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Arthur W. Snow, F. Keith Perkins
  • Patent number: 8911490
    Abstract: A method includes covering ostai of branch vessels emanating from a main vessel and an aneurysm with an integrated mesh high metal to vessel ratio stent. The integrated mesh high metal to vessel ratio stent includes serpentine rings integrated with an integrated mesh having holes formed therein. A metal to vessel ratio of the integrated mesh high metal to vessel ratio stent is sufficiently high to encourage tissue ingrowth around the integrated mesh high metal to vessel ratio stent yet is sufficiently low to ensure perfusion of the branch vessels through the integrated mesh high metal to vessel ratio stent.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 16, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Samuel Robaina, Jeffery Argentine, Walter Bruszewski, Andrew Kiehl
  • Publication number: 20140273259
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M. Campbell, Glenn G. Jernigan, Berend T. Jonker
  • Publication number: 20140249617
    Abstract: A stent-graft delivery system includes a balloon, a sleeve disposed over the balloon, and a stent graft mounted over the sleeve. The sleeve includes a weakened area between a first end and a second end of the sleeve such that when the balloon is expanded, the balloon expands from a center portion of the balloon towards the ends of the balloon. The weakened area of the sleeve may be a slit, a thinner wall section, grooves, notches, or other weakening features. The sleeve may be adhesively attached to an outer shaft of the catheter or to an outer surface of the balloon.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: MEDTRONIC VASCULAR, INC.
    Inventors: Jeffery Argentine, Stephen Gormley, Keith Perkins, Jennifer Wainerdi, James Josaitis, Thomas O'Toole, Padraic Curran, Karl Dooher
  • Patent number: 8728293
    Abstract: A method of immersing an electrode in an electroplating solution while under vacuum, to substantially eliminate air and/or other gas from microscopic holes, cavities or indentations in the electrode. A method of electroplating an electrode in an electroplating solution including the application of a vacuum to the electrode while it is immersed in the electroplating solution to thereby substantially eliminate air and/or other gas from microscopic holes, cavities or indentations in the electrode. The electroplating liquid may be applied to only one side of the electrode (“the wet side”) in which case, sufficient time is allowed to pass for the immersion liquid to fill the microscopic through-holes, cavities or indentations in the electrode. An enhancement of this mode is to force liquid through the microscopic holes from the wet side. A highly penetrating solvent may be used as an immersion liquid.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 20, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy, Naval Research Laboratory
    Inventors: F. Keith Perkins, Perry Skeath, Lee James Johnson, John R Peele, William Bassett