Patents by Inventor Keith W. Seitz

Keith W. Seitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250114622
    Abstract: A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Application
    Filed: December 10, 2024
    Publication date: April 10, 2025
    Applicant: Greatbatch Ltd.
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Publication number: 20250114621
    Abstract: A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Application
    Filed: April 11, 2024
    Publication date: April 10, 2025
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Patent number: 12272899
    Abstract: A feedthrough terminal pin connector assembly for an active implantable medical device (AIMD) includes first and second terminal pin connectors, each comprising a sidewall having an exterior surface spaced from an interior surface defining a connector opening extending along a longitudinal axis. At least a first portion of the sidewall is electrically conductive. An electrically conductive compliant structure is supported by the electrically conductive portion of the sidewall in each of the first and second connector openings. A common housing contains the first and second terminal pin connectors with an insulative material electrically isolating the first and second electrically conductive sidewall portions from each other. The common housing is configured to be supported on a circuit board having at least a first and a second electrical circuits with the first and second electrically conductive portions being electrically connected to the respective first and second electrical circuits.
    Type: Grant
    Filed: June 7, 2024
    Date of Patent: April 8, 2025
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Marc Gregory Martino
  • Patent number: 12268889
    Abstract: A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Grant
    Filed: April 11, 2024
    Date of Patent: April 8, 2025
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Patent number: 12246183
    Abstract: A self-centering washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Grant
    Filed: April 10, 2024
    Date of Patent: March 11, 2025
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Patent number: 12218458
    Abstract: A circuit board for an active implantable medical device (AIMD) has a circuit board land connected to at least one electrical circuit. A hermetic feedthrough terminal pin connector for the AIMD includes an electrical insulator hermetically sealed to an opening of an electrically conductive ferrule. A terminal pin of the feedthrough extends outwardly beyond the insulator. A terminal pin connector has an electrically conductive connector housing that is connected to the circuit board land by an electrical connection material. At least one electrically conductive prong supported by the connector housing contacts and compresses against the feedthrough terminal pin to thereby make a removable electrical connection between the circuit board and the terminal pin. An insulative material loaded with electrically insulative nanoparticles coats at least a portion of the sidewall of the connector housing and the electrical connection material connecting the connector housing to the circuit board land.
    Type: Grant
    Filed: October 4, 2023
    Date of Patent: February 4, 2025
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Christine A. Frysz, Robert A. Stevenson
  • Publication number: 20240390688
    Abstract: An AIMD includes a ceramic base closed with a ceramic lid, both cooperatively separating body fluid and device sides. The lid and circuit board both have active and conductive pathways. A circuit board has active and ground conductive pathways. An anisotropic conductive layer disposed between the lid device side and the circuit board has a first thickness where a first conductive particle is in electrical contact with the lid and the circuit board active conductive pathways electrically connected to the active terminal of an electronic component on the circuit board, a second thickness where a second conductive particle is in electrical contact with the lid and the circuit board ground conductive pathways electrically connected to the ground terminal of the electronic component. The anisotropic conductive layer has a third, greater thickness where no conductive particles are in electrical contact with the lid and circuit board conductive active and ground pathways.
    Type: Application
    Filed: August 7, 2024
    Publication date: November 28, 2024
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Brian P. Hohl, Marc Gregory Martino
  • Patent number: 12149021
    Abstract: A hermetic feedthrough terminal pin connector for an active implantable medical device (AIMD) includes an electrical insulator hermetically sealed to an opening of an electrically conductive ferrule. A feedthrough terminal pin is hermetically sealed to and disposed through the insulator, the feedthrough terminal pin extending outwardly beyond the insulator on the inside of the casing of the AIMD. A circuit board is disposed on the inside of the casing of the AIMD. A terminal pin connector includes: an electrically conductive connector housing disposed on the circuit board, wherein the connector housing is electrically connected to at least one electrical circuit disposed on the circuit board; and at least one electrically conductive prong supported by the connector housing, the at least one prong contacting and compressed against the feedthrough terminal pin, the at least one prong making a removable electrical connection.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: November 19, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Marc Gregory Martino
  • Publication number: 20240322483
    Abstract: A feedthrough terminal pin connector assembly for an active implantable medical device (AIMD) includes first and second terminal pin connectors, each comprising a sidewall having an exterior surface spaced from an interior surface defining a connector opening extending along a longitudinal axis. At least a first portion of the sidewall is electrically conductive. An electrically conductive compliant structure is supported by the electrically conductive portion of the sidewall in each of the first and second connector openings. A common housing contains the first and second terminal pin connectors with an insulative material electrically isolating the first and second electrically conductive sidewall portions from each other. The common housing is configured to be supported on a circuit board having at least a first and a second electrical circuits with the first and second electrically conductive portions being electrically connected to the respective first and second electrical circuits.
    Type: Application
    Filed: June 7, 2024
    Publication date: September 26, 2024
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Marc Gregory Martino
  • Patent number: 12064639
    Abstract: A feedthrough for an AIMD includes a ferrule with an insulator hermetically sealing a ferrule opening, both cooperatively separating a body fluid side from a device side. A circuit board disposed adjacent to the insulator device side has a ground plate or ground trace electrically connected to a circuit board ground conductive pathway disposed in a circuit board ground via hole. An anisotropic conductive layer disposed between the circuit board and the insulator device side has an electrically insulative matrix supporting a plurality of electrically conductive particles. The anisotropic conductive layer has a first thickness where at least one first electrically conductive particle is longitudinally aligned and in electrical contact with the ferrule and the circuit board ground conductive pathway electrically connected to the at least one circuit board ground plate or ground trace.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: August 20, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Brian P Hohl, Marc Gregory Martino
  • Patent number: 11980766
    Abstract: A self-centering washer is positioned between the feedthrough and filter capacitor of a filtered feedthrough. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Grant
    Filed: October 6, 2023
    Date of Patent: May 14, 2024
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Publication number: 20240115868
    Abstract: A self-centering washer is positioned between the feedthrough and filter capacitor of a filtered feedthrough. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 11, 2024
    Inventors: Jason Woods, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz
  • Publication number: 20240115867
    Abstract: The high-voltage and/or high-frequency pulse dielectric breakdown strength (DBS) of an implantable medical device is increased by strategically positioning insulation materials on or adjacent to the external surfaces of a filter capacitor. Dielectric breakdown strength is further increased by adding polymeric or ceramic nanoscale metal oxide insulative powders to the insulation materials.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 11, 2024
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Thomas Marzano, Jason Woods
  • Publication number: 20240039206
    Abstract: A circuit board for an active implantable medical device (AIMD) has a circuit board land connected to at least one electrical circuit. A hermetic feedthrough terminal pin connector for the AIMD includes an electrical insulator hermetically sealed to an opening of an electrically conductive ferrule. A terminal pin of the feedthrough extends outwardly beyond the insulator. A terminal pin connector has an electrically conductive connector housing that is connected to the circuit board land by an electrical connection material. At least one electrically conductive prong supported by the connector housing contacts and compresses against the feedthrough terminal pin to thereby make a removable electrical connection between the circuit board and the terminal pin. An insulative material loaded with electrically insulative nanoparticles coats at least a portion of the sidewall of the connector housing and the electrical connection material connecting the connector housing to the circuit board land.
    Type: Application
    Filed: October 4, 2023
    Publication date: February 1, 2024
    Inventors: Thomas Marzano, Keith W. Seitz, Christine A. Frysz, Robert A. Stevenson
  • Publication number: 20230135610
    Abstract: An inductive charging antenna for charging the power source of an active implantable medical device (AIMD) is described. The charging antenna is supported on the body fluid side of the feedthrough insulator, on the device side of the insulator or it is embedded inside the insulator. The charging antenna is connected to electronic circuits housed inside the medical device to charge the power source so that the device can deliver electrical stimulation to a patient and receive sensed biological signals from body tissue, among other functionalities. If the charging antenna is supported on the insulator body fluid side, it is made from a biocompatible material such as platinum. However, if the charging antenna is embedded inside the feedthrough insulator or is supported on the device side of the insulator, it can be made from a less expensive material that is not biocompatible, for example, copper.
    Type: Application
    Filed: October 25, 2022
    Publication date: May 4, 2023
    Inventors: Luis Daniel Villamil, Keith W. Seitz, Jonathan Calamel, Thomas Marzano, Robert A. Stevenson
  • Patent number: 11588171
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are electrically conductive feedthroughs or pathways, such as of gold, and are formed by brazing gold into tapered via holes machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte of LiPON (LixPOyNz) is used to activate the electrode assembly.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: February 21, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Xiaohong Tang, Holly Noelle Moschiano, Biswa P. Das, Brian P. Hohl
  • Patent number: 11581545
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell has a casing of first and second ceramic substrates that are hermetically secured to each other to provide an internal space housing an electrode assembly. First and second conductive pathways extend through the ceramic substrates. The pathways have respective inner surfaces that are conductively connected to the respective anode and cathode current collectors and respective outer surfaces that provide for connection to a load. An electrolyte in the internal space of the housing activates the electrode assembly.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: February 14, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Brian P. Hohl, Todd C. Sutay, Gary Freitag
  • Patent number: 11527795
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: December 13, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Keith W. Seitz, Xiaohong Tang, Todd C. Sutay, Brian P. Hohl, Holly Noelle Moschiano, Biswa P. Das, Afsar Ali, Sourabh Biswas, Gary Freitag, David Dianetti, Ho-Chul Yun, Thomas Marzano
  • Publication number: 20220376290
    Abstract: A method for providing a miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are electrically conductive feedthroughs or pathways, such as of gold, and are formed by brazing gold into tapered via holes machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte of LiPON (LixPOyNz) is used to activate the electrode assembly.
    Type: Application
    Filed: August 2, 2022
    Publication date: November 24, 2022
    Inventors: Keith W. Seitz, Xiaohong Tang, Holly Noelle Moschiano, Biswa P. Das, Brian P. Hohl
  • Patent number: 11406817
    Abstract: A filtered feedthrough assembly includes a ferrule configured to be installed in an AIMD housing. An insulator is disposed within a ferrule opening. A conductive pathway is disposed within a passageway through the insulator. A filter capacitor is disposed on a device side having active and ground electrode plates disposed within a capacitor dielectric k greater than 0 and less than 1,000. A capacitor active metallization is electrically connected to the active electrode plates. A ground capacitor metallization is electrically connected to the ground electrode plates. The filter capacitor is the first filter capacitor electrically connected to the conductive pathway coming from a body fluid side into the device side. An active electrical connection electrically connects the conductive pathway to the capacitor active metallization. A ground electrical connection electrically connects the ground capacitor metallization to the ferrule. The filter capacitor is a flat-through or an X2Y attenuator filter capacitor.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: August 9, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz