Patents by Inventor Keith W. Seitz

Keith W. Seitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180361164
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of forming a ceramic body in a green state, or, stacking discrete layers of ceramic in a green state upon one another and laminating together. The ceramic body has a first side opposite a second side. At least one via hole is formed straight through the ceramic body extending between the first and second sides. At least one via hole is filled with a conductive paste. The ceramic body and the conductive paste are then dried. The ceramic body and the conductive paste are isostatically pressed at above 1000 psi to remove voids and to form a closer interface for sintering. The ceramic body and the conductive paste are sintered together to form the feedthrough dielectric body. The feedthrough dielectric body is hermetically sealed to a ferrule.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 20, 2018
    Inventors: Robert A. Stevenson, Thomas Marzano, Keith W. Seitz, Christine A. Frysz, Dallas J. Rensel, Brian P. Hohl
  • Publication number: 20180304084
    Abstract: A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing a ferrule opening of an electrically conductive ferrule with a gold braze. A co-fired and electrically conductive sintered paste is disposed within and hermetically seals at least one via hole extending in the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects a capacitor active metallization and the sintered paste. A ground electrical connection electrically connects the gold braze to a capacitor ground metallization, wherein at least a portion of the ground electrical connection physically contacts the gold braze. The dielectric of the capacitor may be less than 1000 k. The ferrule may include an integrally formed peninsula portion extending into the ferrule opening spatially aligned with a ground passageway and metallization of an internally grounded feedthrough capacitor.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 25, 2018
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Thomas Marzano, Marc Gregory Martino
  • Patent number: 10092749
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 9, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Publication number: 20180272137
    Abstract: Disclosed herein are electrically conductive and hermetic vias disposed within an insulator substrate of a feedthrough assembly and methods for making and using the same. Such aspects of the present invention consequently provide for the miniaturization of feedthrough assemblies inasmuch as the feedthrough components of the present invention are capable of supporting very small and hermetic conductively filled via holes in the absence of additional components, such as, for example, terminal pins, leadwires, and the like.
    Type: Application
    Filed: March 27, 2018
    Publication date: September 27, 2018
    Inventors: Keith W. Seitz, Xiaohong Tang, William C. Thiebolt, Jonathan Calamel, Thomas Shi, Thomas Marzano
  • Patent number: 10046166
    Abstract: A hermetically sealed feedthrough filter assembly is attachable to an active implantable medical device and includes an insulator substrate assembly and a feedthrough filter capacitor disposed on a device side. A conductive leadwire has a proximal leadwire end extending to a distal leadwire end, wherein the proximal leadwire end is connectable to electronics internal to the AIMD. The distal leadwire end is disposed at least partially through a first passageway of the feedthrough filter capacitor and is in contact with, adjacent to or near a device side conductive fill. A first electrically conductive material makes a three-way electrically connection that electrically connects the device side conductive fill to an internal metallization of the feedthrough filter capacitor and to the distal leadwire end. A second electrically conductive material electrically connects an external metallization of the feedthrough filter capacitor to a ferrule or an AIMD housing.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 14, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Thomas Marzano, Keith W. Seitz, Christine A. Frysz
  • Publication number: 20180197661
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of: a) forming an alumina ceramic body in a green state, or, stacking upon one another discrete layers of alumina ceramic in a green state and pressing; b) forming at least one via hole straight through the alumina ceramic body; c) filling the at least one via hole with a ceramic reinforced metal composite paste; d) drying the alumina ceramic body and the ceramic reinforced metal composite paste; e) forming a second hole straight through the ceramic reinforced metal composite paste being smaller in diameter in comparison to the at least one via hole; f) filling the second hole with a substantially pure metal paste; g) sintering the alumina ceramic body, the ceramic reinforced metal composite paste and the metal paste; and h) hermetically sealing the feedthrough dielectric body to a ferrule.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Publication number: 20180178017
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 28, 2018
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20180178016
    Abstract: A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 28, 2018
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Patent number: 9993650
    Abstract: A filter feedthrough is described. The filter feedthrough includes a conductive ferrule supporting a dielectric substrate having a body fluid side and a device side. At least one via hole provided with a conductive fill is disposed through the dielectric substrate from the body fluid side to the device side. At least one MLCC-type capacitor is supported by the dielectric substrate. A first circuit trace couples from an active metallization connected to the active electrode plates of the capacitor to conductive fill in the via hole. A second circuit trace couples from the ground electrode plate of the capacitor to a metallization contacting an outer surface of the dielectric substrate. Then, a conductive material couples from the ground metallization to the ferrule to thereby electrically couple the capacitor to the ferrule.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 12, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano
  • Publication number: 20180126176
    Abstract: A feedthrough subassembly is attachable to an active implantable medical device. A via hole is disposed through an electrically insulative and biocompatible feedthrough body extending from a body fluid side to a device side. A composite fill partially disposed within the via hole extends between a first and a second composite fill end. The first composite fill end is disposed at or near the device side of the feedthrough body. The second composite fill end is disposed within the via hole recessed from the body fluid side. The composite fill includes a first portion of a ceramic reinforced metal composite including alumina and platinum and a second portion of a substantially pure platinum fill and/or a platinum wire. A via hole metallization covers a portion of the second composite fill end. A metallic leadwire is at least partially disposed within the via hole and gold brazed via hole metallization.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Publication number: 20180126175
    Abstract: An insulative feedthrough attachable to an active implantable medical device includes a feedthrough body having a material which is both electrically insulative, biocompatible and separates a body fluid side from a device side. A passageway is disposed through the feedthrough body. A composite conductor is disposed within the passageway and has a body fluid side metallic wire electrically conductive to a device side metallic wire. The body fluid side metallic wire extends from a first end disposed inside the passageway to a second end on the body fluid side. The device side metallic wire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side metallic wire is hermetically sealed to the feedthrough body. The body fluid side metallic wire is biocompatible and is not the same material as the device side metallic wire.
    Type: Application
    Filed: May 24, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Patent number: 9889306
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20180008822
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 11, 2018
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Publication number: 20170291034
    Abstract: A feedthrough filter capacitor assembly comprising a terminal pin connector is described. The terminal pin connector is designed to facilitate an electrical connection between the terminal pin comprising a multitude of compositions to a circuit board of an implantable medical device. The terminal pin connector comprises a clip portion positioned within a connector housing. The connector clip mechanically attaches to the terminal pin of the feedthrough with at least one prong and an exterior surface of the connector housing electrically contacts the circuit board, creating an electrical connection therebetween. The connector housing comprises a material that is conducive to a weld or solder attachment process to the circuit board.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 12, 2017
    Inventors: Thomas Marzano, Keith W. Seitz, Michael F. Scalise
  • Patent number: 9764129
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: September 19, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Patent number: 9757558
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: September 12, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Patent number: 9692173
    Abstract: A feedthrough filter capacitor assembly comprising a terminal pin connector is described. The terminal pin connector is designed to facilitate an electrical connection between the terminal pin comprising a multitude of compositions to a circuit board of an implantable medical device. The terminal pin connector comprises a clip portion positioned within a connector housing. The connector clip mechanically attaches to the terminal pin of the feedthrough with at least one prong and an exterior surface of the connector housing electrically contacts the circuit board, creating an electrical connection therebetween. The connector housing comprises a material that is conducive to a weld or solder attachment process to the circuit board.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 27, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Michael F. Scalise
  • Patent number: 9687662
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: June 27, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20170080239
    Abstract: A filter feedthrough is described. The filter feedthrough includes a conductive ferrule supporting a dielectric substrate having a body fluid side and a device side. At least one via hole provided with a conductive fill is disposed through the dielectric substrate from the body fluid side to the device side. At least one MLCC-type capacitor is supported by the dielectric substrate. A first circuit trace couples from an active metallization connected to the active electrode plates of the capacitor to conductive fill in the via hole. A second circuit trace couples from the ground electrode plate of the capacitor to a metallization contacting an outer surface of the dielectric substrate. Then, a conductive material couples from the ground metallization to the ferrule to thereby electrically couple the capacitor to the ferrule.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano
  • Patent number: 9511220
    Abstract: An elevated feedthrough is attachable to a top or a side of an active implantable medical device. The feedthrough includes a conductive ferrule and a dielectric substrate. The dielectric substrate is defined as comprising a body fluid side and a device side disposed within the conductive ferrule. The dielectric substrate includes a body fluid side elevated portion generally raised above the conductive ferrule. At least one via hole is disposed through the dielectric substrate from the body fluid side to the device side. A conductive fill is disposed within the at least one via hole forming a hermetic seal and electrically conductive between the body fluid side and the device side. A leadwire connection feature is on the body fluid side electrically coupled to the conductive fill and disposed adjacent to the elevated portion of the dielectric substrate.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: December 6, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Richard L. Brendel, Jason Woods, Steven W. Winn, Dominick J. Frustaci, Bruehl E. Truex, Donald H. Hickel, Jr.