Patents by Inventor Kelly J. Bruland

Kelly J. Bruland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598490
    Abstract: Tailored laser pulse shapes are used for processing workpieces. Laser dicing of semiconductor device wafers on die-attach film (DAF), for example, may use different tailored laser pulse shapes for scribing device layers down to a semiconductor substrate, dicing the semiconductor substrate, cutting the underlying DAF, and/or post processing of the upper die edges to increase die break strength. Different mono-shape laser pulse trains may be used for respective recipe steps or passes of a laser beam over a scribe line. In another embodiment, scribing a semiconductor device wafer includes only a single pass of a laser beam along a scribe line using a mixed-shape laser pulse train that includes at least two laser pulses that are different than one another. In addition, or in other embodiments, one or more tailored pulse shapes may be selected and provided to the workpiece on-the-fly. The selection may be based on sensor feedback.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 3, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Andrew Hooper, David Barsic, Kelly J. Bruland, Daragh S. Finn, Lynn Sheehan, Xiaoyuan Peng, Yasu Osako, Jim Dumestre, William J. Jordens
  • Patent number: 8526473
    Abstract: Processing workpieces such as semiconductor wafers or other materials with a laser includes selecting a target to process that corresponds to a target class associated with a predefined temporal pulse profile. The temporal pulse profile includes a first portion that defines a first time duration, and a second portion that defines a second time duration. A method includes generating a laser pulse based on laser system input parameters configured to shape the laser pulse according to the temporal pulse profile, detecting the generated laser pulse, comparing the generated laser pulse to the temporal pulse profile, and adjusting the laser system input parameters based on the comparison.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 3, 2013
    Assignee: Electro Scientific Industries
    Inventors: Brian W. Baird, Clint R. Vandergiessen, Steve Swaringen, Robert Hainsey, Yunlong Sun, Kelly J. Bruland, Andrew Hooper
  • Patent number: 8383982
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using multiple laser beams. The structures may be laser-severable conductive links, and the purpose of the irradiation may be to sever selected links.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 26, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Stephen N. Swaringen, Brian W. Baird, Ho Wai Lo, David Martin Hemenway, Brady Nilsen, Clint Vandergiessen
  • Patent number: 8358671
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: January 22, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Publication number: 20120160814
    Abstract: Systems and methods ablate electrically conductive links using laser pulses with optimized temporal power profiles and/or polarizations. In certain embodiments, the polarization property of a laser beam is set such that coupling between the laser beam and an electrically conductive link reduces the pulse energy required to ablate the electrically conductive link. In one such embodiment, the polarization is selected based on a depth of a target link structure. In another embodiment, the polarization changes as deeper material is removed from a target location. In addition, or in other embodiments, a first portion of a temporal power profile of a laser beam includes a rapid rise time to heat an upper portion of an electrically conductive link so as to form cracks in a passivation layer over upper corners of the electrically conductive link, without forming cracks at lower corners of the electrically conductive link.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 28, 2012
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Kelly J. Bruland, Andrew Hooper, Jim Dumestre, David Lord
  • Patent number: 8178818
    Abstract: A laser processing system includes a beam positioning system to align beam delivery coordinates relative to a workpiece. The beam positioning system generates position data corresponding to the alignment. The system also includes a pulsed laser source and a beamlet generation module to receive a laser pulse from the pulsed laser source. The beamlet generation module generates a beamlet array from the laser pulse. The beamlet array includes a plurality of beamlet pulses. The system further includes a beamlet modulator to selectively modulate the amplitude of each beamlet pulse in the beamlet array, and beamlet delivery optics to focus the modulated beamlet array onto one or more targets at locations on the workpiece corresponding to the position data.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 15, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Robert Hainsey
  • Patent number: 8148211
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method simultaneously directs the first and second laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row, so as to selectively irradiate structures in the row with one or more of the first and second laser beams simultaneously.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 3, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Patent number: 8110775
    Abstract: A system determines relative positions of a semiconductor substrate and a plurality of laser beam spots on or within the semiconductor substrate in a machine for selectively irradiating structures on or within the substrate using a plurality of laser beams. The system comprises a laser source, first and second laser beam propagation paths, first and second reflection sensors, and a processor. The laser source produces at least the first and second laser beams, which propagate toward the substrate along the first and second propagation paths, respectively, which have respective first and second axes that intersects the substrate at respective first and second spots. The reflection sensors are positioned to detect reflection of the spots, as the spots moves relative to the substrate, thereby generating reflection signals. The processor is configured to determine, based on the reflection signals, positions of the spots on or within the substrate.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 7, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Ho Wai Lo, David Martin Hemenway, Brady Nilsen, Kelly J. Bruland
  • Patent number: 8076605
    Abstract: Systems and methods automatically modify a laser-based system for processing target specimens such as semiconductor wafers. In one embodiment, the laser-based system detects a trigger associated with a processing model. The processing model corresponds to a set of wafers. In response to the trigger, the system automatically adjusts one or more system parameters based on the processing model. The system then uses the modified system parameters to selectively irradiate structures on or within at least one wafer in the set of wafers. In one embodiment, the trigger includes variations in a thermal state related to a motion stage. In response to the variations in the thermal state, the system operates the motion stage in a series of movements until a thermal equilibrium threshold is reached. The sequence of movements may, for example, simulate movements used to process a particular wafer.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: December 13, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Clint Vandergiessen, Duane Eitzen
  • Publication number: 20110298156
    Abstract: Tailored laser pulse shapes are used for processing workpieces. Laser dicing of semiconductor device wafers on die-attach film (DAF), for example, may use different tailored laser pulse shapes for scribing device layers down to a semiconductor substrate, dicing the semiconductor substrate, cutting the underlying DAF, and/or post processing of the upper die edges to increase die break strength. Different mono-shape laser pulse trains may be used for respective recipe steps or passes of a laser beam over a scribe line. In another embodiment, scribing a semiconductor device wafer includes only a single pass of a laser beam along a scribe line using a mixed-shape laser pulse train that includes at least two laser pulses that are different than one another. In addition, or in other embodiments, one or more tailored pulse shapes may be selected and provided to the workpiece on-the-fly. The selection may be based on sensor feedback.
    Type: Application
    Filed: March 31, 2011
    Publication date: December 8, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Andrew Hooper, David Barsic, Kelly J. Bruland, Daragh S. Finn, Lynn Sheehan, Xiaoyuan Peng, Yasu Osako, Jim Dumestre, William J. Jordens
  • Publication number: 20110272388
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Patent number: 8049135
    Abstract: A method makes a discrete adjustment to static alignment of a laser beam in a machine for selectively irradiating conductive links on or within a semiconductor substrate using the laser beam. The laser beam propagates along a beam path having an axis extending from a laser to a laser beam spot at a location on or within the semiconductor substrate. The method generates, based on at least one measured characteristic of the laser beam, at least one signal to control an adjustable optical element of the machine effecting the laser beam path. The method also sends said at least one signal to the adjustable optical element. The method then adjusts the adjustable optical element in response to said at least one signal so as to improve static alignment of the laser beam path axis.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: November 1, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Stephen N. Swaringen
  • Patent number: 8026158
    Abstract: Systems and methods process structures on or within a semiconductor substrate using a series of laser pulses. In one embodiment, a deflector is configured to selectively deflect the laser pulses within a processing window. The processing window is scanned over the semiconductor substrate such that a plurality of laterally spaced rows of structures simultaneously pass through the processing window. As the processing window is scanned, the deflector selectively deflects the series of laser pulses among the laterally spaced rows within the processing window. Thus, multiple rows of structures may be processed in a single scan.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 27, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Mark A. Unrath, Douglas E. Holmgren
  • Publication number: 20110210103
    Abstract: Systems and methods process structures on or within a semiconductor substrate using a series of laser pulses. In one embodiment, a deflector is configured to selectively deflect the laser pulses within a processing window. The processing window is scanned over the semiconductor substrate such that a plurality of laterally spaced rows of structures simultaneously pass through the processing window. As the processing window is scanned, the deflector selectively deflects the series of laser pulses among the laterally spaced rows within the processing window. Thus, multiple rows of structures may be processed in a single scan.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Kelly J. Bruland, Mark A. Unrath, Douglas E. Holmgren
  • Publication number: 20110186555
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of pulsed laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first pulsed laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second pulsed laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs respective first and second pulses from the first and second pulsed laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Patent number: 7982160
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 19, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Patent number: 7964819
    Abstract: Various methods and systems measure, determine, or align a position of a laser beam spot relative to a semiconductor substrate having structures on or within the semiconductor substrate to be selectively processed by delivering a processing laser beam to a processing laser beam spot. The various methods and systems utilize those structures themselves to perform the measurement, determination, or alignment.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Kelly J. Bruland
  • Patent number: 7935941
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs the first and second laser beams onto non-adjacent first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate along the row substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: May 3, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Frank G. Evans
  • Patent number: 7923306
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of pulsed laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first pulsed laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second pulsed laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs respective first and second pulses from the first and second pulsed laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 12, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Publication number: 20100133651
    Abstract: A method is used in processing structures on or within a semiconductor substrate using N series of laser pulses to obtain a throughput benefit, wherein N?2. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The N series of laser pulses propagate along N respective beam axes until incident upon selected structures in N respective distinct rows. The method determines a joint velocity profile for simultaneously moving in the lengthwise direction the N laser beam axes substantially in unison relative to the semiconductor substrate so as to process structures in the N rows with the respective N series of laser pulses, whereby the joint velocity profile is such that the throughput benefit is achieved while ensuring that the joint velocity profile represents feasible velocities for each of the N series of laser pulses and for each of the respective N rows of structures processed with the N series of laser pulses.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 3, 2010
    Applicant: Electro Scientific Industries, Inc.
    Inventor: Kelly J. Bruland