Patents by Inventor Kendall S. Fruchey

Kendall S. Fruchey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10400185
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. This can allow for formation of unexpected base stock compositions.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 3, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lisa I-Ching Yeh, Yogi V. Shukla, Pilanda Watkins-Curry, Camden N. Henderson, Kendall S. Fruchey, Michael B. Carroll, Adrienne R. Diebold
  • Publication number: 20190264116
    Abstract: Adsorbents for aromatic adsorption are used to improve one or more properties of base stocks derived from deasphalted oil fractions. The adsorbents can allow for removal of polynuclear aromatics from an intermediate effluent or final effluent during base stock production. Removal of polynuclear aromatics can be beneficial for improving the color of heavy neutral base stocks and/or reducing the turbidity of bright stocks.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 29, 2019
    Inventors: William R. GUNTHER, Kendall S. FRUCHEY, Vinit CHOUDHARY, Adrienne R. DIEBOLD, Jason M. McMULLAN
  • Publication number: 20190218465
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. The separate processing can allow for selection of conditions for forming lubricant fractions, such as bright stock fractions, that have a cloud point that is lower than the pour point.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Kendall S. FRUCHEY, Michael B. CARROLL, Timothy L. HILBERT, Adrienne R. DIEBOLD, Lisa I-Ching YEH, Camden N. HE NDERSON
  • Patent number: 10316263
    Abstract: Fuels and/or fuel blending components can be formed from hydroprocessing of high lift deasphalted oil. The high lift deasphalting can correspond to solvent deasphalting to produce a yield of deasphalted oil of at least 50 wt %, or at least 65 wt %, or at least 75 wt %. The resulting fuels and/or fuel blending components formed by hydroprocessing of the deasphalted oil can have unexpectedly high naphthene content and/or density. Additionally or alternately, the resulting fuels and/or fuel blending components can have a clear and bright appearance.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: June 11, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Sheryl B. Rubin-Pitel, Kenneth C. H. Kar, Kendall S. Fruchey
  • Patent number: 10287516
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. The separate processing can allow for selection of conditions for forming lubricant fractions, such as bright stock fractions, that have a cloud point that is lower than the pour point.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: May 14, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kendall S. Fruchey, Michael B. Carroll, Timothy L. Hilbert, Adrienne R. Diebold, Lisa I-Ching Yeh, Camden N. Henderson
  • Patent number: 10221367
    Abstract: Methods are provided for upgrading disadvantaged feeds for use in lubricant base stock production. A disadvantaged feed can be upgraded by hydroprocessing the feed to form a hydroprocessed bottoms fraction. The hydroprocessed bottoms fraction can then be used as a feed for forming Group I and/or Group II lubricant base stocks, optionally in combination with a conventional feed for lubricant production. The remaining portions of the hydroprocessing effluent can optionally be used for FCC processing and/or for other conventional applications of naphtha and distillate fractions.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 5, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Corry S. Powers, Liezhong Gong, Nicole D. Vaughn, Beatrice M. Gooding, Kendall S. Fruchey, Eric D. Joseck, Marc Sonnentrucker
  • Publication number: 20190016965
    Abstract: Systems and methods are provided for using a three-product deasphalter to produce advantageous combinations of deasphalted oil, resin, and rock. The desaphalted oil, resin, and rock can then be further combined, optionally with other vacuum gas oil fractions produced during the distillation that generated the feed to the three-product deasphalter, to produce a product slate of improved quality while also maintaining the quality of the resulting asphalt product and reducing or minimizing the amount of lower value products generated. The additional “resin” product from the three product deasphalter can be generated by sequential deasphalting, by using a resin settler to separate resin from the deasphalted oil, or by any other convenient method.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Keith K. ALDOUS, Kamal BOUSSAD, Kendall S. FRUCHEY, Sara K. GREEN
  • Publication number: 20180371343
    Abstract: Fuels and/or fuel blending components can be formed from hydroprocessing of high lift deasphalted oil. The high lift deasphalting can correspond to solvent deasphalting to produce a yield of deasphalted oil of at least 50 wt %, or at least 65 wt %, or at least 75 wt %. The resulting fuels and/or fuel blending components formed by hydroprocessing of the deasphalted oil can have unexpectedly high naphthene content and/or density. Additionally or alternately, the resulting fuels and/or fuel blending components can have a clear and bright appearance.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 27, 2018
    Inventors: Sheryl B. RUBIN-PITEL, Kenneth C.H. KAR, Kendall S. FRUCHEY
  • Publication number: 20180291290
    Abstract: Systems and methods are provided for upgrading catalytic slurry oil. The upgrading can be performed by deasphalting the catalytic slurry oil to form a deasphalted oil and a residual or rock fraction. The deasphalted oil can then be hydroprocessed to form an upgraded effluent that includes fuels boiling range products.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 11, 2018
    Inventors: Stephen H. BROWN, Brian A. CUNNINGHAM, Randolph J. SMILEY, Samia ILIAS, Keith K. ALDOUS, Sara K. GREEN, Patrick L. HANKS, Kendall S. FRUCHEY
  • Publication number: 20180187092
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 5, 2018
    Inventors: Kendall S. Fruchey, Michael B. Carroll, Timothy L. Hilbert
  • Publication number: 20180187116
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. This can allow for formation of unexpected base stock compositions.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 5, 2018
    Inventors: Lisa I-Ching Yeh, Yogi V. Shukla, Pilanda Watkins-Curry, Camden N. Henderson, Kendall S. Fruchey, Michael B. Carroll, Adrienne R. Diebold
  • Publication number: 20180187105
    Abstract: Systems and methods are provided for performing solvent extraction on heavy neutral base stocks. The aromatic extraction can reduce aromatics content while have a reduced or minimized impact on lubricant properties. This can allow, for example, for correction of color and/or haze for heavy neutral base stocks, such as heavy neutral base stocks formed from a deasphalted oil.
    Type: Application
    Filed: December 15, 2017
    Publication date: July 5, 2018
    Inventors: Tracie L. Owens, Kendall S. Fruchey, Michael B. Carroll, Camden N. Henderson, Lisa I-Ching Yeh, Timothy L. Hilbert
  • Publication number: 20180187102
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. The initial stage can optionally include a bulk hydrotreating catalyst to assist with increasing the space velocity in the initial stage.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 5, 2018
    Inventors: Kendall S. Fruchey, Michael B. Carroll, Timothy L. Hilbert, Sara K. Green, Doron Levin
  • Publication number: 20180187089
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. The separate processing can allow for selection of conditions for forming lubricant fractions, such as bright stock fractions, that have a cloud point that is lower than the pour point.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 5, 2018
    Inventors: Kendall S. Fruchey, Michael B. Carroll, Timothy L. Hilbert, Adrienne R. Diebold, Lisa I-Ching Yeh, Camden N. Henderson
  • Publication number: 20170283717
    Abstract: Systems and methods are provided for producing lubricant basestocks having a reduced or minimized aromatics content. A first processing stage can perform an initial amount of hydrotreating and/or hydrocracking. A first separation stage can then be used to remove fuels boiling range (and lower boiling range) compounds. The remaining lubricant boiling range fraction can then be exposed under hydrocracking conditions to a USY catalyst including a supported noble metal, such as Pt and/or Pd. The USY catalyst can have a desirable combination of catalyst properties, such as a unit cell size of 24.30 or less (or 24.24 or less), a silica to alumina ratio of at least 50 (or at least 80), and an alpha value of 20 or less (or 10 or less). In some aspects, the effluent from the second (hydrocracking) stage can be dewaxed without further separation. In such aspects, a portion of the dewaxed effluent can be used as a recycle quench stream to cool the hydrocracking effluent prior to entering the dewaxing reactor.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 5, 2017
    Inventors: Ajit B. Dandekar, Bradley R. Fingland, Kendall S. Fruchey, Scott J. Weigel
  • Publication number: 20170283729
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 5, 2017
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, JR., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Publication number: 20170211003
    Abstract: Methods are provided for upgrading disadvantaged feeds for use in lubricant base stock production. A disadvantaged feed can be upgraded by hydroprocessing the feed to form a hydroprocessed bottoms fraction. The hydroprocessed bottoms fraction can then be used as a feed for forming Group I and/or Group II lubricant base stocks, optionally in combination with a conventional feed for lubricant production. The remaining portions of the hydroprocessing effluent can optionally be used for FCC processing and/or for other conventional applications of naphtha and distillate fractions.
    Type: Application
    Filed: December 16, 2016
    Publication date: July 27, 2017
    Inventors: Corry S. Powers, Liezhong Gong, Nicole D. Vaughn, Beatrice M. Gooding, Kendall S. Fruchey, Eric D. Joseck, Marc Sonnentrucker
  • Publication number: 20170211005
    Abstract: Compositions are provided for lubricant base stocks produced from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: July 27, 2017
    Inventors: Lisa I-Ching Yeh, Rugved P. Pathare, Eric B. Senzer, Camden N. Henderson, Tracie L. Owens, Kendall S. Fruchey, Timothy L. Hilbert, Michael B. Carroll, Debra A. Sysyn, Kathleen E. Edwards, Bryan E. Hagee
  • Publication number: 20170183578
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks. The catalytic processing can correspond to processing in at least two stages. The amount of conversion performed in each stage can be varied to produce bright stocks with various properties.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Charles L. Baker, JR., Camden N. Henderson
  • Publication number: 20170183575
    Abstract: Fuels and/or fuel blending components can be formed from hydroprocessing of high lift deasphalted oil. The high lift deasphalting can correspond to solvent deasphalting to produce a yield of deasphalted oil of at least 50 wt %, or at least 65 wt %, or at least 75 wt %. The resulting fuels and/or fuel blending components formed by hydroprocessing of the deasphalted oil can have unexpectedly high naphthene content and/or density. Additionally or alternately, deasphalted oil generated from high lift deasphalting represents a disadvantaged feed that can be converted into a fuel and/or fuel blending components with unexpected compositions. Additionally or alternately, the resulting fuels and/or fuel blending components can have unexpectedly beneficial cold flow properties, such as cloud point, pour point, and/or freeze point.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Sheryl B. Rubin-Pitel, Kenneth KAR, Kendall S. Fruchey