Patents by Inventor Kengo Hara

Kengo Hara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11107429
    Abstract: According to an embodiment of the present invention, an active matrix substrate (100) includes a display region (DR) defined by a plurality of pixel regions (P) arranged in a matrix and a peripheral region (FR) located around the display region. The active matrix substrate includes a substrate (1), a first TFT (10), and a second TFT (20). The first TFT is supported by the substrate and disposed in the peripheral region. The second TFT is supported by the substrate and disposed in the display region. The first TFT includes a crystalline silicon semiconductor layer (11), which is an active layer. The second TFT includes an oxide semiconductor layer (21), which is an active layer. The first TFT and the second TFT each have a top-gate structure.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 31, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tetsuo Kikuchi, Hideki Kitagawa, Hajime Imai, Toshikatsu Itoh, Masahiko Suzuki, Teruyuki Ueda, Kengo Hara, Setsuji Nishimiya, Tohru Daitoh
  • Publication number: 20210249445
    Abstract: An active matrix substrate includes a plurality of gate bus lines, a plurality of source bus lines located closer to the substrate side; a lower insulating layer that covers the source bus lines; an interlayer insulating layer that covers the gate bus lines; a plurality of oxide semiconductor TFTs disposed in association with respective pixel regions; a pixel electrode disposed in each of the pixel regions; and a plurality of source contact portions each of which electrically connects one of the oxide semiconductor TFTs to the corresponding one of the source bus lines, in which each of the oxide semiconductor TFTs includes an oxide semiconductor layer disposed on the lower insulating layer, a gate electrode disposed on a portion of the oxide semiconductor layer, and a source electrode formed of a conductive film, and each of the source contact portions includes a source contact hole, and a connection electrode.
    Type: Application
    Filed: January 25, 2021
    Publication date: August 12, 2021
    Inventors: Masahiko SUZUKI, Tetsuo KIKUCHI, Hideki KITAGAWA, Setsuji NISHIMIYA, Kengo HARA, Hitoshi TAKAHATA, Tohru DAITOH
  • Patent number: 11043599
    Abstract: A semiconductor device (100) includes a TFT (10) supported on a substrate (11), wherein the TFT (10) includes a gate electrode (12g), a gate insulating layer (14) that covers the gate electrode (12g), and an oxide semiconductor layer (16) that is formed on the gate insulating layer (14). The oxide semiconductor layer 16 has a layered structure including a first oxide semiconductor layer (16a) in contact with the gate insulating layer (14) and a second oxide semiconductor layer (16b) layered on the first oxide semiconductor layer (16a). The first oxide semiconductor layer (16a) and the second oxide semiconductor layer (16b) both include In, Ga and Zn; an In atomic ratio of the first oxide semiconductor layer (16a) is greater than a Zn atomic ratio thereof, and an In atomic ratio of the second oxide semiconductor layer (16b) is smaller than a Zn atomic ratio thereof; and the oxide semiconductor layer (16) has a side surface of a forward tapered shape.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 22, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Setsuji Nishimiya, Tohru Daitoh, Masahiko Suzuki, Kengo Hara, Hajime Imai, Toshikatsu Itoh, Hideki Kitagawa, Tetsuo Kikuchi, Teruyuki Ueda
  • Patent number: 11038001
    Abstract: An oxide semiconductor TFT (201) of an active matrix substrate includes an oxide semiconductor layer (107), an upper gate electrode (112) disposed on a part of the oxide semiconductor layer via a gate insulating layer, and a source electrode (113) and a drain electrode (114). As viewed from a normal direction of the substrate, the oxide semiconductor layer (107) includes a first portion (p1) that overlaps the upper gate electrode, and a second portion (p2) that is located between the first portion and the source contact region or drain contact region, such that the gate insulating layer does not cover the second portion. The upper gate electrode (112) has a multilayer structure including an alloy layer (112L) that is in contact with the gate insulating layer and a metal layer (112U) that is disposed on the alloy layer. The metal layer is made of a first metallic element M; the alloy layer is made of an alloy containing the first metallic element M; and the first metallic element M is Cu, Mo, or Cr.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 15, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Teruyuki Ueda, Hideki Kitagawa, Tohru Daitoh, Hajime Imai, Masahiko Suzuki, Setsuji Nishimiya, Tetsuo Kikuchi, Toshikatsu Itoh, Kengo Hara
  • Patent number: 10989948
    Abstract: A method for manufacturing an active matrix substrate including a thin film transistor for each pixel, and a first electrode and a first wiring line for touchscreen panel function includes: forming a transparent electrically conductive film on an interlayer insulating layer and within a first contact hole; forming, on a portion of the transparent electrically conductive film, an upper wiring portion to become an upper layer of the first wiring line; patterning the transparent electrically conductive film to make a pixel electrode and form a lower wiring portion to become a lower layer of the first wiring line; forming a dielectric layer covering the pixel electrode and the first wiring line and having a second contact hole through which a portion of the first wiring line is exposed; and forming a common electrode which is electrically connected to the first wiring line within the second contact hole.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: April 27, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Hikaru Yoshino, Junichi Morinaga, Tetsuo Kikuchi, Kengo Hara
  • Patent number: 10928691
    Abstract: An active matrix substrate 10 includes: switching elements 120 that are connected with gate lines and data lines provided on a substrate; pixel electrodes 130 that are connected with the switching elements 120; counter electrodes 140 that overlap with the pixel electrodes 130 when viewed in a plan view; a flattening film 154; and lines 142. The flattening film 154 covers the switching elements 120, and first contact holes CH1 that pass through the flattening film 154 are formed at positions that overlap with the lines 142 when viewed in a plan view. The pixel electrodes 130 and the counter electrodes 140 are arranged so that each of the same partially covers the flattening film 154. The line 142 and the counter electrode 140 are connected with each other in the first contact hole CH1.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: February 23, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Setsuji Nishimiya, Tohru Daitoh, Hajime Imai, Tetsuo Kikuchi, Masahiko Suzuki, Teruyuki Ueda, Masamitsu Yamanaka, Kengo Hara, Hitoshi Takahata
  • Publication number: 20210036158
    Abstract: A semiconductor device (100) includes a TFT (10) supported on a substrate (11), wherein the TFT (10) includes a gate electrode (12g), a gate insulating layer (14) that covers the gate electrode (12g), and an oxide semiconductor layer (16) that is formed on the gate insulating layer (14). The oxide semiconductor layer 16 has a layered structure including a first oxide semiconductor layer (16a) in contact with the gate insulating layer (14) and a second oxide semiconductor layer (16b) layered on the first oxide semiconductor layer (16a). The first oxide semiconductor layer (16a) and the second oxide semiconductor layer (16b) both include In, Ga and Zn; an In atomic ratio of the first oxide semiconductor layer (16a) is greater than a Zn atomic ratio thereof, and an In atomic ratio of the second oxide semi-conductor layer (16b) is smaller than a Zn atomic ratio thereof; and the oxide semiconductor layer (16) has a side surface of a forward tapered shape.
    Type: Application
    Filed: March 8, 2018
    Publication date: February 4, 2021
    Inventors: Setsuji NISHIMIYA, Tohru DAITOH, Masahiko SUZUKI, Kengo HARA, Hajime IMAI, Toshikatsu ITOH, Hideki KITAGAWA, Tetsuo KIKUCHI, Teruyuki UEDA
  • Publication number: 20210013238
    Abstract: An active matrix substrate includes a substrate; a plurality of gate bus lines and a plurality of source bus lines; an oxide semiconductor TFT that includes an oxide semiconductor layer, a gate insulating layer, and a gate electrode; a pixel electrode; and an upper insulating layer. The oxide semiconductor layer includes a high resistance region, and a first region and a second region. The high resistance region includes a channel region, a first channel offset region, and a second channel offset region. The upper insulating layer is disposed so as to overlap the channel region, the first channel offset region, and the second channel offset region, and so as not to overlap any of the first region and the second region, when viewed from the normal direction of the main surface of the substrate.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 14, 2021
    Inventors: Masahiko SUZUKI, Yoshihito HARA, Tetsuo KIKUCHI, Setsuji NISHIMIYA, Kengo HARA, Masamitsu YAMANAKA, Hitoshi TAKAHATA, Hajime IMAI, Tohru DAITOH
  • Publication number: 20200388637
    Abstract: An active matrix substrate includes a substrate, a plurality of oxide semiconductor TFTs, a plurality of gate bus lines, a plurality of source bus lines, and at least one trunk wiring provided in a non-display region and transmitting a signal, and a plurality of other wirings, each of which is disposed so as to at least partially overlap the trunk wirings. The active matrix substrate includes a first metal layer, a second metal layer disposed above the first metal layer, and a third metal layer disposed above the second metal layer on the substrate. One of the first, second, and third metal layers includes a source bus line, and other layer includes a gate bus line. The trunk wiring is formed in two metal layer of the first, second and third metal layers.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 10, 2020
    Inventors: Tetsuo KIKUCHI, Tohru DAITOH, Hajime IMAI, Masahiko SUZUKI, Setsuji NISHIMIYA, Kengo HARA, Masamitsu YAMANAKA, Hitoshi TAKAHATA
  • Patent number: 10825843
    Abstract: Provided is an active matrix substrate (100A) including: a gate metal layer (15) that has a two-layer structure composed of a Cu layer (15b) and a Ti layer (15a); a first insulating layer (16) on the gate metal layer (15); a source metal layer (18) that is formed on the first insulating layer (16) and has a two-layer structure composed of a Cu layer (18b) and a Ti layer (18a); a second insulating layer (19) on the source metal layer (18); a conductive layer (25) that is formed on the second insulating layer (19), and is in contact with the gate metal layer (15) within a first opening (16a1) formed in the first insulating layer (16) and is in contact with the source metal layer (18) within a second opening (19a2) formed in the second insulating layer (19); and a first transparent conductive layer (21) that is formed on the conductive layer (25) and includes any of a pixel electrode, a common electrode and an auxiliary capacitor electrode.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: November 3, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Teruyuki Ueda, Hideki Kitagawa, Tohru Daitoh, Hajime Imai, Masahiko Suzuki, Setsuji Nishimiya, Tetsuo Kikuchi, Toshikatsu Itoh, Kengo Hara
  • Patent number: 10818697
    Abstract: A semiconductor device includes a first TFT, a first source-side connection section that is formed from a part of a second metal film and connected to a first source region, a first drain-side connection section that is formed from a part of the second metal film and connected to a first drain region, a second TFT that is driven by the first TFT, a second source-side connection section that is formed from a part of a first metal film and connected to a second source region, and a second drain-side connection section that is formed from a part of the first metal film or a second transparent electrode film and connected to a second drain region.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Tohru Daitoh, Hajime Imai, Tetsuo Kikuchi, Setsuji Nishimiya, Teruyuki Ueda, Masamitsu Yamanaka, Kengo Hara
  • Patent number: 10816865
    Abstract: Provided is an active matrix substrate provided with a substrate (1), a peripheral circuit that includes a first oxide semiconductor thin-film transistor (TFT) (101), a plurality of second oxide semiconductor TFTs (102) disposed in a display area, and a first inorganic insulating layer (11) covering the plurality of second oxide semiconductor TFTs (102), the first oxide semiconductor TFT (101) having a lower gate electrode (3A), a gate insulating layer (4), an oxide semiconductor (5A) disposed so as to face the lower gate electrode with the gate insulating layer interposed therebetween, a source electrode (7A) and a drain electrode (8A), and an upper gate electrode (BG) disposed on the oxide semiconductor (5A) with an insulating layer that includes the first inorganic insulating layer (11) interposed therebetween, and furthermore having, on the upper gate electrode (BG), a second inorganic insulating layer (17) covering the first oxide semiconductor TFT (101).
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tetsuo Kikuchi, Tohru Daitoh, Hajime Imai, Toshikatsu Itoh, Hisao Ochi, Hideki Kitagawa, Masahiko Suzuki, Teruyuki Ueda, Ryosuke Gunji, Kengo Hara, Setsuji Nishimiya
  • Patent number: 10818766
    Abstract: An active matrix substrate according to an embodiment of the present invention includes a plurality of thin film transistors supported on a substrate and an inorganic insulating layer covering the plurality of thin film transistors. Each thin film transistor includes a gate electrode, an oxide semiconductor layer, a gate insulating layer, a source electrode, and a drain electrode. At least one of the gate insulating layer and the inorganic insulating layer is an insulating layer stack having a multilayer structure including a silicon oxide layer and a silicon nitride layer. The insulating layer stack further includes an intermediate layer disposed between the silicon oxide layer and the silicon nitride layer, the intermediate layer having a refractive index nC higher than a refractive index nA of the silicon oxide layer and lower than a refractive index nB of the silicon nitride layer.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Hideki Kitagawa, Tetsuo Kikuchi, Toshikatsu Itoh, Setsuji Nishimiya, Teruyuki Ueda, Kengo Hara, Hajime Imai, Tohru Daitoh
  • Patent number: 10797082
    Abstract: A TFT array substrate includes gate electrodes constructed from a first metal film, a first insulating film on the first metal film, channels constructed from a semiconductor film on the first insulating film, source electrodes constructed from a second metal film on the semiconductor film, drain electrodes constructed from the second metal film, pixel electrodes constructed from portions of the semiconductor film having reduced resistances, a second insulating film on the semiconductor film and the second metal film, and a common electrode constructed from a transparent electrode film on the second insulating film. The channels overlap the gate electrodes. The source electrodes and the drain electrodes are connected to first ends and second ends of the channels, respectively. The pixel electrodes are connected to the drain electrodes. The second insulating film includes sections overlapping the pixel electrodes without openings. The common electrode overlaps at least the pixel electrodes.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: October 6, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tetsuo Kikuchi, Tohru Daitoh, Hajime Imai, Masahiko Suzuki, Setsuji Nishimiya, Teruyuki Ueda, Kengo Hara
  • Publication number: 20200303425
    Abstract: A method for manufacturing an active matrix board includes (E) a step of forming a source contact hole and a drain contact hole in an interlayer insulating layer such that a portion of a source contact region of an oxide semiconductor layer and a portion of a drain contact region thereof are exposed and forming a connecting portion contact hole in the interlayer insulating layer and a lower insulating layer such that a portion of a lower conductive layer is exposed; and (F) a step of forming a source electrode, a drain electrode, and an upper conductive layer on the interlayer insulating layer; and the step (E) includes (e-1) a step of forming a photoresist film on the interlayer insulating layer and (e-2) a step of forming a photoresist layer in such a manner that the photoresist film is exposed to light using a multi-tone mask and is then developed.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 24, 2020
    Inventors: Kengo HARA, Tohru DAITOH, Hajime IMAI, Tetsuo KIKUCHI, Masahiko SUZUKI, Setsuji NISHIMIYA, Masamitsu YAMANAKA, Teruyuki UEDA, Hitoshi TAKAHATA
  • Publication number: 20200287054
    Abstract: A semiconductor device includes a thin film transistor including a semiconductor layer, a gate electrode, a gate insulating layer positioned between the semiconductor layer and the gate electrode, and a source electrode and a drain electrode that are electrically connected to the semiconductor layer, wherein the semiconductor layer has a stacked layer structure including a first oxide semiconductor layer including In, Ga, Zn, and Sn, and a second oxide semiconductor layer including In, Ga, Zn, and Sn, having a lower mobility than the first oxide semiconductor layer, and disposed on the first oxide semiconductor layer so as to be in direct contact with the first oxide semiconductor layer, the first and the second oxide semiconductor layers are amorphous, and a Sn atomic ratio R1 relative to all metal elements in the first oxide semiconductor layer and a Sn atomic ratio R2 relative to all metal elements in the second oxide semiconductor layer satisfy 0.8×R1?R2?1.2×R1.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Masahiko SUZUKI, Hajime IMAI, Tetsuo KIKUCHI, Yoshimasa CHIKAMA, Setsuji NISHIMIYA, Teruyuki UEDA, Masamitsu YAMANAKA, Kengo HARA, Hitoshi TAKAHATA, Tohru DAITOH
  • Publication number: 20200264485
    Abstract: An active matrix substrate 10 includes: switching elements 120 that are connected with gate lines and data lines provided on a substrate; pixel electrodes 130 that are connected with the switching elements 120; counter electrodes 140 that overlap with the pixel electrodes 130 when viewed in a plan view; a flattening film 154; and lines 142. The flattening film 154 covers the switching elements 120, and first contact holes CH1 that pass through the flattening film 154 are formed at positions that overlap with the lines 142 when viewed in a plan view. The pixel electrodes 130 and the counter electrodes 140 are arranged so that each of the same partially covers the flattening film 154. The line 142 and the counter electrode 140 are connected with each other in the first contact hole CH1.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 20, 2020
    Inventors: Setsuji NISHIMIYA, Tohru DAITOH, Hajime IMAI, Tetsuo KIKUCHI, Masahiko SUZUKI, Teruyuki UEDA, Masamitsu YAMANAKA, Kengo HARA, Hitoshi TAKAHATA
  • Patent number: 10741696
    Abstract: A semiconductor device includes a thin film transistor including a semiconductor layer, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, the semiconductor layer includes a layered structure including a first oxide semiconductor layer including In and Zn, in which an atomic ratio of In with respect to all metallic elements included in the first oxide semiconductor layer is higher than an atomic ratio of Zn, a second oxide semiconductor layer including In and Zn, in which an atomic ratio of Zn with respect to all metallic elements included in the second oxide semiconductor layer is higher than an atomic ratio of In, and an intermediate oxide semiconductor layer arranged between the first oxide semiconductor layer and the second oxide semiconductor layer, and the first and second oxide semiconductor layers are crystalline oxide semiconductor layers, and the intermediate oxide semiconductor layer is an amorphous oxide semiconductor layer, and the first oxide semiconductor layer is
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 11, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Hajime Imai, Hideki Kitagawa, Tetsuo Kikuchi, Setsuji Nishimiya, Teruyuki Ueda, Kengo Hara, Tohru Daitoh, Toshikatsu Itoh
  • Publication number: 20200227560
    Abstract: A semiconductor device (100) of an embodiment of the present invention includes: a substrate (1); a plurality of TFTs (10) supported by the substrate; and a protecting layer (20) covering the plurality of TFTs. Each of the TFTs is a back channel etch type TFT which includes a gate electrode (2), a gate insulating layer (3), an oxide semiconductor layer (4), a source electrode (5) and a drain electrode (6). The gate electrode includes a tapered portion (TP) defined by a lateral surface (2s) which has a tapered shape. When viewed in a direction normal to a substrate surface, a periphery of the oxide semiconductor layer includes an edge (4e1, 4e2) which extends in a direction intersecting a channel width direction (DW) and which is more internal than an edge of the gate electrode in the channel width direction. The distance from the edge of the oxide semiconductor layer to an inside end of the tapered portion is not less than 1.5 ?m.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 16, 2020
    Inventors: Toshikatsu ITOH, Hajime IMAI, Hideki KITAGAWA, Tetsuo KIKUCHI, Setsuji NISHIMIYA, Teruyuki UEDA, Kengo HARA, Tohru DAITOH, Masahiko SUZUKI
  • Publication number: 20200183208
    Abstract: Provided is an active matrix substrate provided with a substrate (1), a peripheral circuit that includes a first oxide semiconductor thin-film transistor (TFT) (101), a plurality of second oxide semiconductor TFTs (102) disposed in a display area, and a first inorganic insulating layer (11) covering the plurality of second oxide semiconductor TFTs (102), the first oxide semiconductor TFT (101) having a lower gate electrode (3A), a gate insulating layer (4), an oxide semiconductor (5A) disposed so as to face the lower gate electrode with the gate insulating layer interposed therebetween, a source electrode (7A) and a drain electrode (8A), and an upper gate electrode (BG) disposed on the oxide semiconductor (5A) with an insulating layer that includes the first inorganic insulating layer (11) interposed therebetween, and furthermore having, on the upper gate electrode (BG), a second inorganic insulating layer (17) covering the first oxide semiconductor TFT (101).
    Type: Application
    Filed: March 13, 2017
    Publication date: June 11, 2020
    Inventors: Tetsuo KIKUCHI, Tohru DAITOH, Hajime IMAI, Toshikatsu ITOH, Hisao OCHI, Hideki KITAGAWA, Masahiko SUZUKI, Teruyuki UEDA, Ryosuke GUNJI, Kengo HARA, Setsuji NISHIMIYA